ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 18, 2022
Revised November 2, 2022
Accepted December 16, 2022
Acknowledgements
This work was partly supported by Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE). (P0008475, Development Program for Smart Digital Engineering Specialist) and Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE) (20207200000070, Development of performance standardization and operation risk estimation for renewable energylinked alkaline water electrolysis hydrogen production systems using digital t
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Multiple linear regression and GRU model for the online prediction of catalyst activity and lifetime in counter-current continuous catalytic reforming

1Department of Chemical Engineering, Myongji University, 116 Myongjiro, Cheoingu, Yongin, Gyeonggido 17058, Korea 2Hanwha TotalEnergies Petrochemical, 103 Doggod2-ro, Daesan-eup, Seosan-si, Chungcheongnam-do 31900, Korea
dongil@mju.ac.kr
Korean Journal of Chemical Engineering, June 2023, 40(6), 1284-1296(13), 10.1007/s11814-023-1378-2
downloadDownload PDF

Abstract

In the catalytic reforming process, aromatic yield is a standard for evaluating the production quality of the process, and studies are underway to improve productivity by optimizing the cost and energy. In particular, the activity and lifetime prediction of reforming catalysts can contribute to overall process efficiency improvement, such as product quality, productivity, and predictive maintenance. However, it is difficult to predict real-time catalyst activity and lifetime according to changes in process operation with the existing method that requires experimental data. In this study, a multiple linear regression (MLR) model and GRU model with the real process operating data are proposed for long-term plant operation and optimization in the counter-current continuous catalytic reforming. The MLR-GRU model predicts catalyst performance degradation and lifetime according to operating conditions by defining a new variable, reforming catalyst activity. The proposed model can predict the future reformate yield with an error of less than 1%. As a result of predicting the catalyst lifetime according to various operating temperatures, feed flow patterns, and feed quality, the feed flow rate had the greatest influence on the catalyst lifetime profile. In terms of the amount of produced reformate oil, the case with maximum feed rate is the worst (25.6%); on the other hand, the case with minimum feed rate is the best (+11.4%). Thus, it is important to establish an appropriate production plan of the produced reformate oil. The model proposed in this study can predict the reformate yield and lifetime, reflecting the degradation of catalyst performance according to the operating profile in real-time, which is expected to improve productivity by production scheduling, optimization, and predictive maintenance.

References

1. M. R. Rahimpour, M. Jafari and D. Iranshahi, Appl. Energy, 109,79 (2013).
2. M. A. Fahim, T. A. Alsahhaf and A. Elkilani, Chapter 5 - catalytic reforming and isomerization, M. A. Fahim, T. A. Alsahhaf and A.Elkilani Eds., Amsterdam, Elsevier (2010).
3. J. Jarvis, A. Wong, P. He, Q. Li and H. Song, Fuel, 223, 211 (2018).
4. D. Seddon, Catal. Today, 6(3), 351 (1990).
5. J. Yao, R. le van Mao and L. Dufresne, Appl. Catal., 65(2), 175(1990).
6. C. Jiang, W. Zhong, Z. Li, X. Peng and M. Yang, Ind. Eng. Chem.Res., 58, 17406 (2019).
7. M. Z. Stijepovic, P. Linke and M. Kijevanin, Energy Fuels, 24, 1908(2010).
8. H. Jiang, Y. Sun, S. Jiang, Z. Li and J. Tian, Energy Fuels, 35(13),10770 (2021).
9. M. Wei, M. Yang, F. Qian and W. Du, IFAC-PapersOnLine, 48(8),373 (2015).
10. M. S. Gyngazova, A. V. Kravtsov, E. D. Ivanchina, M. V. Korolenko and N. V. Chekantsev, Chem. Eng. J., 176-177, 134 (2011).
11. D. Iranshahi, M. Karimi, S. Amiri, M. Jafari, R. Rafiei and M. R.Rahimpour, Chem. Eng. Res. Des., 92, 1704 (2014).
12. I. Elizalde and J. Ancheyta, Appl. Math. Model., 39, 764 (2015).
13. M. Wei, M. Yang, F. Qian, W. Du and W. Zhong, Ind. Eng. Chem.Res., 55(19), 5714 (2016).
14. X.-J. Dong, Y.-J. He, J.-N. Shen and Z.-F. Ma, Chem. Eng. J., 175,306 (2018).
15. P. Pasandide and M. Rahmani, Int. J. Hydrogen, 46(58), 30005 (2021).
16. R. Z. Zainullin, A. N. Zagoruiko, K. F. Koledina, I. M. Gubaidullin and R. I. Faskhutdinova, Catal. Ind., 12, 133 (2020).
17. B. S. Babaqi, M. S. Takriff, N. T. A. Othman and S. K. Kamarudin,Energy, 206, 118098 (2020).
18. H. Jiang, Z. Li, Y. Sun, S. Jiang and J. Tian, ACS Omega, 7(2), 1757(2022).
19. X. Zhou, Z. Hou, J. Wang, W. Fang, A. Ma, J. Guo and M. T. Klein,Energy Fuels, 32(6), 7078 (2018).
20. G. Ertl, H. Knözinger and J. Weitkamp, Handbook of heterogeneous catalysis, Wiley-VCH, Chichester (2008).
21. H. Qi, X.-G. Zhou, L.-H. Liu and W.-K. Yuan, Chem. Eng. Sci., 54,2521 (1999).
22. A. Smith, A. Keane, J. A. Dumesic, G. W. Huber and V. M. Zavala,Appl. Catal. B: Environ., 263, 118257 (2020).
23. H. C. Aguiar and R. M. Filho, Chem. Eng. Sci., 56, 565 (2001).
24. D. S. Lee, C. O. Jeon, J. M. Park and K. S. Chang, Biotechnol. Bioeng., 78, 670 (2002).
25. F. J. Doyle, C. A. Harrison and T. J. Crowley, Comput. Chem. Eng.,27, 1153 (2003).
26. A. Saraceno, S. Curcio, V. Calabro and G. Iorio, Comput. Chem.Eng., 34, 1590 (2010).
27. A. Azarpour, S. R. Wan Alwi, G. Zahedi, M. Madooli and G. J.Millar, Appl. Catal. A: Gen., 489, 262 (2015).
28. A. Azarpour, T. Borhani, S. Wan Alwi, Z. Manan and M. Abdul Mutalib, Chem. Eng. Res. Des., 117, 149 (2017).
29. A. Kokka, T. Ramantani and P. Panagiotopoulou, Catalysts, 11, 374(2021).
30. M.S. Ahmad, C.K. Cheng, P. Bhuyar, A.E. Atabani, A. Pugazhendhi,N. T. L. Chi, T. Witoon, J. W. Lim and J. C. Juan, Fuel, 283, 118851(2021).
31. L. Bui, M. Joswiak, I. Castillo, A. Phillips, J. Yang and D. Hickman,ACS Eng. Au, 2(1), 17 (2022).
32. P. Schober, C. Boer and L. A. Schwarte, Anesth. Analg., 126(5), 1763(2018)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로