ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received October 1, 2022
Revised October 26, 2022
Accepted October 26, 2022
Acknowledgements
This study was supported by the Ministry of Trade, Industry, and Energy (MOTIE, Korea) under the Industrial Technology Innovation Program (No. 20011712) and by National Research Foundation of Korea (NRF) grants funded by the Ministry of Science and ICT (MSIT) of the Korean government (No. NRF-2016R1A5 A1009592 and NRF-2021M3H4A6A01041234).
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Lattice Boltzmann modeling and analysis of ceramic filtration with different pore structures

Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea
bjchun@grtrkr.korea.ac.kr, hwjung@grtrkr.korea.ac.k
Korean Journal of Chemical Engineering, June 2023, 40(6), 1309-1316(8), 10.1007/s11814-022-1329-3
downloadDownload PDF

Abstract

The pressure drop in the ceramic filter system of the after-treatment device has a great effect on automobile engine performance. To predict the pressure drop under various operating conditions, it is necessary to analyze how the structural properties of porous media affect the permeability. The commonly used Kozeny-Carman model correlating permeability and porosity is useful for porous media composed of spherical grains, but exhibits considerable deviations in the actual ceramic filter system with low porosity. In this study, the permeability of overlapped-random structured porous media with low porosity was numerically solved by mesoscopic lattice Boltzmann (LB) method in Darcy flow regime. Based on LB simulation results, a new capillary model modified from Kozeny-Carman model is proposed for practically predicting the permeability of complex porous filter systems, using key structural variables such as porosity, tortuosity, and effective pore-throat radius.

References

1. U. D. Schiller and F. Wang, MRS Commun., 8, 358 (2018).
2. D. Fino, P. Fino, G. Saracco and V. Specchia, Korean J. Chem. Eng.,20, 445 (2003).
3. S. Bensaid, D. L. Marchisio, D. Fino, G. Saracco and V. Specchia,Chem. Eng. J., 154, 211 (2009).
4. T.-T. Nguyen, A. Demortière, B. Fleutot, B. Delobel, C. Delacourt and S. J. Cooper, npj Comput. Mater., 6, 1 (2020).
5. M. F. Lagadec, R. Zahn and V. Wood, Nat. Energy, 4, 16 (2019).
6. G. Jeon, S. Y. Yang and J. K. Kim, J. Mater. Chem., 22, 14814 (2012).
7. M. Masoudi, A. G. Konstandopoulos, M. S. Nikitidis, E. Skaperdas, D. Zarvalis, E. Kladopoulou and C. Altiparmakis, SAE Transactions, 110, 650 (2001).
8. C. J. Kamp, P. Folino, Y. Wang, A. Sappok, J. Ernstmeyer, A. Saeid,R. Singh, B. Kharraja and V. W. Wong, SAE Int. J. Fuels Lubr., 8,487 (2015).
9. G. A. Merkel, W. A. Cutler, T. Tao, A. Chiffey, P. Phillips, M. V.Twigg and A. Walker, in Proceedings of the 9th Diesel Engine Emissions Reduction Conference (2003).
10. M. Nakamura, K. Yokota, M. Hattori and M. Ozawa, SAE Technical Paper Series, 2020-01-2169 (2020).
11. O. A. Haralampous, I. P. Kandylas, G. C. Koltsakis and Z. C. Samaras, Int. J. Engine Res., 5, 149 (2004).
12. R. H. Perry, Perry’s chemical engineers’ handbook, McGraw-Hill,New York (1984).
13. R. C. Reid, J. M. Prausnitz and B. E. Poling, The properties of gases and liquids, McGraw-Hill, New York (1987).
14. D. Y. Lee, G. W. Lee, K. Yoon, B. Chun and H. W. Jung, Appl. Surf.Sci., 429, 72 (2018).
15. J. Kozeny, Sitzungsber. Akad. Wiss. Wien, 136, 271 (1927).
16. P. C. Carman, Trans. Inst. Chem. Eng., 15, 150 (1937).
17. F. Civan, Reservoir formation damage, Gulf Professional Publishing, Burlington, MA (2007).
18. M. Safari, R. Gholami, M. Jami, M. A. Ananthan, A. Rahimi and
W. S. Khur, J. Pet. Sci. Eng., 205, 108896 (2021).
19. A. Nabovati, E. W. Llewellin and A. C. M. Sousa, Compos. Pt. AAppl. Sci. Manuf., 40, 6 (2009).
20. F. Wang and U. D. Schiller, Phys. Rev. Mater., 4, 083803 (2020).
21. F. Wang and U. D. Schiller, Phys. Rev. Mater., 4, 083804 (2020).
22. X. Garcia, L. T. Akanji, M. J. Blunt, S. K. Matthai and J. P. Latham,Phys. Rev. E., 80, 021304 (2009).
23. P. Guo, Transp. Porous Media, 95, 285 (2012).
24. C. Tien and B. V. Ramarao, Powder Technol., 237, 233 (2013).
25. R. Schulz, N. Ray, S. Zech, A. Rupp and P. Knabner, Transp. Porous Media, 130, 487 (2019).
26. S. Chen and G. D. Doolen, Annu. Rev. Fluid Mech., 30, 329 (1998).
27. S. Succi, E. Foti and F. Higuera, Europhys. Lett., 10, 433 (1989).
28. H. Darcy, Les fontaines publiques de la ville de Dijon, V. Dalmont,Paris (1856).
29. J. Happel and H. Brenner, Low Reynolds number hydrodynamics:With special applications to particulate media, Springer, Berlin (2012).
30. J. Happel, AIChE J., 4, 197 (1958).
31. B. Ghanbarian, A. G. Hunt, R. P. Ewing and M. Sahimi, Soil Sci.Soc. Am. J., 77, 1461 (2013).
32. M. Mota, J. A. Teixeira, W. R. Bowen and A. Yelshin, Trans. Filt.Soc., 1, 101 (2001).
33. M. M. Ahmadi, S. Mohammadi and A. N. Hayati, Phys. Rev. E, 83,026312 (2011).
34. A. Koponen, M. Kataja and J. Timonen, Phys. Rev. E, 54, 406 (1996).
35. M. Matyka, A. Khalili and Z. Koza, Phys. Rev. E, 78, 026306 (2008).
36. A. Duda, Z. Koza and M. Matyka, Phys. Rev. E, 84, 036319 (2011).
37. E. Mauret and M. Renaud, Chem. Eng. Sci., 52, 1807 (1997).
38. G. E. Archie, Trans. AIME, 146, 54 (1942).
39. C. F. Berg, Transp. Porous Med, 103, 381 (2014).
40. F. A. L. Dullien, Porous media: Fluid transport and pore structure,Academic Press, New York (1992).
41. C. F. Berg, Phys. Rev. E, 86, 046314 (2012).
42. E. E. Petersen, AIChE J., 4, 343 (1958).
43. X. Huang, Q. Wang, W. Zhou, D. Deng, Y. Zhao, D. Wen and J. Li,Powder Technol., 283, 618 (2015).
44. E. Brun, J. Vicente, F. Topin, R. Occelli and M. J. Clifton, Adv. Eng.Mater., 11, 805 (2009).
45. A. Rabbani, S. Jamshidi and S. Salehi, J. Pet. Sci. Eng., 123, 164(2014).
46. W.E. Lorensen and H.E. Cline, ACM SIGGRAPH Computer Graphics, 21, 163 (1987).
47. A. J. C. Ladd, J. Fluid Mech., 271, 285 (1994).
48. A. J. C. Ladd and R. Verberg, J. Stat. Phys., 104, 1191 (2001).
49. N. Q. Nguyen and A. J. C. Ladd, Phys. Rev. E, 66, 046708 (2002).
50. B. Chun, J. S. Park, H. W. Jung and Y.-Y. Won, J. Rheol., 63, 437(2019).
51. B. Chun and H. W. Jung, Phys. Fluids, 33, 053318 (2021).
52. I. Ginzburg and D. d’Humieres, Phys. Rev. E, 68, 066614 (2003)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로