Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received November 5, 2022
Revised January 13, 2023
Accepted February 5, 2023
- Acknowledgements
- This study was supported by the Australian Research Council (ARC) Discovery grant (DP210103025). We acknowledge the PhD scholarship from the University of Newcastle through the Australian Government Research Training Program Scholarship. The authors acknowledge the help and support from Dr Huiming Zhang for TEM-EDS analysis, Mr. Tony Rothkirch for ICP-MS tests, and Dr. Sathish Clastinrusselraj Indirathankam for TPR tests at the University of Newcastle
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Low-temperature catalytic hydrogen combustion over Pd-Cu/Al2O3: Catalyst optimization and rate law determination
Abstract
Catalytic hydrogen combustion (CHC) is a promising technology for clean, efficient, and safe energy generation in hydrogen-fueled systems such as fuel cells and passive autocatalytic recombination. This study investigates catalytic hydrogen combustion over the Pd-Cu/Al2O3 catalysts at low temperatures (<125 o
C) to determine the rate law using
a differential fixed-bed reactor. The particle size distribution and reducibility of the catalysts were studied to investigate
the influence of the catalyst composition on its reactivity. Higher reduction temperatures promoted the formation of
metallic Pd, leading to improved catalytic reactivity at the optimized composition of Pd0.75Cu0.25/Al2O3. Furthermore, the
rate law of CHC over the optimized catalyst was determined by non-linear regression based on the experimental reaction rates obtained under different partial pressures of H2 and O2. The Langmuir-Hinshelwood single-site mechanism
was found to provide the best description of the catalytic combustion of hydrogen at low temperatures.
References
2. I. Staffell, D. Scamman, A. Velazquez Abad, P. Balcombe, P. E.Dodds, P. Ekins, N. Shah and K. R. Ward, Energy Environ. Sci., 12,463 (2019).
3. Z. He, Y. Yan, F. Xu, Z. Yang, H. Cui, Z. Wu and L. Li, Int. J. Hydrogen Energy, 45, 5014 (2020).
4. A. Cappelletti and F. Martelli, Int. J. Hydrogen Energy, 42, 10513(2017).
5. C. E. Arrieta, A. M. García and A. A. Amell, Int. J. Hydrogen Energy,42, 12669 (2017).
6. S. Malyshenko, Int. J. Hydrogen Energy, 29, 589 (2004).
7. S. M. Brković, V. M. Nikolić, M. P. Marčeta Kaninski and I. A. Pašti,Int. J. Hydrogen Energy, 44, 13364 (2019).
8. K. Park, H. Matsune, M. Kishida and S. Takenaka, Int. J. Hydrogen Energy, 42, 18951 (2017).
9. R. He, G. Xu, Y. Wu, K. Shi, H. Tang, P. Ma, J. Zeng, Y. Bai and S.Chen, Int. J. Hydrogen Energy, 44, 5940 (2019).
10. K. Park, T. Ohnishi, M. Goto, M. So, S. Takenaka, Y. Tsuge and G.Inoue, Int. J. Hydrogen Energy, 45, 1867 (2020).
11. Q. Lu, J. Pan, S. Hu, A. Tang and X. Shao, Int. J. Hydrogen Energy,41, 12387 (2016).
12. J. Wan, A. Fan, K. Maruta, H. Yao and W. Liu, Int. J. Hydrogen Energy, 37, 19190 (2012).
13. H. Yilmaz, Int. J. Hydrogen Energy, 44, 25985 (2019).
14. V. F. Valdés-López, T. Mason, P. R. Shearing and D. J. L. Brett, Prog.Energy Combust. Sci., 79, 100842 (2020).
15. S. Wang, L. Chen, F. Niu, D. Chen, L. Qin, X. Sun and Y. Huang,Int. J. Energy Res., 40, 1979 (2016).
16. A. Qamareen, S. S. Alam and M. A. Ansari, Energy Technol., 9,2100294 (2021).
17. Y. Yan, Q. Xu, W. Tang, Q. Huang, L. Zhang, L. Li and Z. Yang,Energy Technol., 5, 1495 (2017).
18. W. C. Pfefferle and L. D. Pfefferle, Prog. Energy Combust. Sci., 12,25 (1986).
19. B. Fumey, S. Stoller, R. Fricker, R. Weber, V. Dorer and U. F. Vogt,Int. J. Hydrogen Energy, 41, 7494 (2016).
20. B. Fumey, T. Buetler and U. F. Vogt, Appl Energy, 213, 334 (2018).
21. B. Sarkar, R. R. Ratnakar and V. Balakotaiah, Chem. Eng. J., 425,130318 (2021).
22. A. Q. Zade, M. Renksizbulut and J. Friedman, Chem. Eng. J., 181-182, 643 (2012).
23. Q. Huang, W. Li, Q, Lin, X. Zheng, H. Pan, D. Pi, C. Shao, C. Hu and H. Zhang, J. Energy Inst., 91, 733 (2018).
24. A. Setiawan, E. M. Kennedy, B. Z. Dlugogorski, A. A. Adesina, O.Tkachenko and M. Stockenhuber, Energy Technol., 2, 243 (2014).
25. J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin,T. Bligaard and H. Jónsson, J. Phys. Chem. B, 108, 17886 (2004).
26. J. F. Kramer, S.-A. S. Reihani and G. S. Jackson, Proc. Combust. Inst.,29, 989 (2002).
27. P. A. Deshpande and G. Madras, Appl. Catal. B, 100, 481 (2010).
28. H.-J. Eom, J. H. Jang, D.-W. Lee, S. Kim and K.-Y. Lee, J. Mol.Catal. A Chem., 349, 48 (2011).
29. V. M. Shinde and G. Madras, Catal. Today, 198, 270 (2012).
30. K. R. Kim, S. W. Paek, H. J. Choi and H. Chung, J. Ind. Eng. Chem.,7, 116 (2001).
31. F. Morfin, J.-C. Sabroux and A. Renouprez, Appl. Catal. B, 47, 47(2004).
32. Y. Iwai, K. Sato, J. Taniuchi, H. Noguchi, H. Kubo, N. Harada, Y.Oshima and T. Yamanishi, J. Nucl. Sci. Technol., 48, 1184 (2011).
33. K. K. Sanap, S. Varma, D. Dalavi, P. S. Patil, S. B. Waghmode and S. R. Bharadwaj, Int. J. Hydrogen Energy, 36, 10455 (2011).
34. K. C. Sandeep, R. Bhattacharyya, C. Warghat, K. Bhanja and S.Mohan, Int. J. Hydrogen Energy, 39, 17906 (2014).
35. E. Lalik, R. Kosydar, R. Tokarz-Sobieraj, M. Witko, T. Szumełda,M. Kołodziej, W. Rojek, T. Machej, E. Bielańska and A. Drelinkiewicz, Appl. Catal. A, 501, 27 (2015).
36. D. Lomot and Z. Karpiński, Res. Chem. Intermed., 41, 9171 (2015).
37. V. N. Nguyen, R. Deja, R. Peters, L. Blum and D. Stolten, Int. J.Hydrogen Energy, 43, 17520 (2018).
38. S. Yu, D. Hong, Y. Lee, S. Lee and K. Ahn, Renew. Energy, 35, 1083(2010).
39. Z. R. Ismagilov, M. A. Kerzhentsev, V. A. Sazonov, L. T. Tsykoza,N. V. Shikina, V. V. Kuznetsov, V. A. Ushakov, S. V. Mishanin, N. G.Kozhukhar, G. Russo and O. Deutschmann, Korean J. Chem. Eng.,20, 461 (2003).
40. A. E. Kozhukhova, S. P. Du Preez and D. G. Bessarabov, Int. J. Hydrogen Energy, 47, 12726 (2002).
41. W. T. Figueiredo, G. B. Della Mea, M. Segala, D. L. Baptista, C.Escudero, V. Pérez-Dieste and F. Bernardi, ACS Appl. Nano Mater.,2, 2559 (2019).
42. M. Haruta and H. Sano, Int. J. Hydrogen Energy, 6, 601 (1981).
43. V. M. Shinde and G. Madras, Appl. Catal. B, 132-133, 28 (2013).
44. J.-W. Jung, K. Oh, K.-D. Jung, W. I. Kim and H. L. Koh, Korean J.Chem. Eng., 38, 1197 (2021).
45. S. Kaneko, T. Arakawa, M.-A. Ohshima, H. Kurokawa and H.Miura, Appl. Catal. A, 356, 80 (2009).
46. F. Giarratano, G. M. Arzac, V. Godinho, D. Hufschmidt, M. C.Jiménez De Haro, O. Montes and A. Fernández, Appl. Catal. B,235, 168 (2018).
47. E. Lalik, A. Drelinkiewicz, R. Kosydar, R. Tokarz-Sobieraj, M. Witko,T. Szumełda, J. Gurgul and D. Duraczyńska, Appl. Catal. A, 517,196 (2016).
48. G. J. Kim, J. H. Shin and S. Chang Hong, Int. J. Hydrogen Energy.45, 17276 (2020).
49. H. Roozbahani, S. Maghsoodi, B. Raei, A. S. Kootenaei and Z.Azizi, Korean J. Chem. Eng., 39, 586 (2022).
50. D. Lomot and Z. Karpiński, Pol. J. Chem. Technol., 18, 15 (2016).
51. Z. Yin, D. Gao, S. Yao, B. Zhao, F. Cai, L. Lin, P. Tang, P. Zhai, G.Wang, D. Ma and X. Bao, Nano Energy, 27, 35 (2016).
52. S. R. Chowdhury, P. Mukherjee and S. K. Bhattachrya, Int. J. Hydrogen Energy, 41, 17072 (2016).
53. J. Wu, S. Shan, J. Luo, P. Joseph, V. Petkov and C.-J. Zhong, ACS Appl. Mater. Interfaces, 7, 25906 (2015).
54. M. B. Boucher, B. Zugic, G. Cladaras, J. Kammert, M. D. Marcinkowski, T. J. Lawton, E. C. H. Sykes and M. Flytzani-Stephanopoulos, Phys. Chem. Chem. Phys., 15, 12187 (2013).
55. J. Kim, J. Yu, S. Lee, A. Tahmasebi, C.-H. Jeon and J. Lucas, Int. J.Hydrogen Energy, 46, 40073 (2021).
56. J. Papp, J. Catal., 23, 168 (1971).
57. S. M. A. Rahman, A. Tahmasebi, B. Moghtaderi and J. Yu, Energy Fuels, 34, 6052 (2020).
58. G. J. Kim, D. W. Kwon and S. C. Hong, J. Phys. Chem. C, 120,17996 (2016).
59. Y. J. Huang, J. A. Schwarz, J. R. Diehl and J. P. Baltrus, Appl. Catal.,37, 229 (1988).
60. M.-k. Min, J. Cho, K. Cho and H. Kim, Electrochim. Acta, 45, 4211(2000).
61. A. P. Lagrow, M. R. Ward, D. C. Lloyd, P. L. Gai and E. D. Boyes, J.Am. Chem. Soc., 139, 179 (2017).
62. B. T. Meshesha, N. Barrabés, J. Llorca, A. Dafinov, F. Medina and K. Föttinger, Appl. Catal. A, 453, 130 (2013).
63. J. Zheng, H. Zeng, C. Tan, T. Zhang, B. Zhao, W. Guo, H. Wang, Y.Sun and L. Jiang, ACS Sustain. Chem. Eng., 7, 15354 (2019).
64. G. M. Arzac, O. Montes and A. Fernández, Appl. Catal. B, 201, 391(2017).
65. V. S. Marakatti, S. C. Sarma, B. Joseph, D. Banerjee and S. C. Peter,ACS Appl. Mater. Interfaces, 9, 3602 (2017).
66. Y. Liu, Y. He, D. Zhou, J. Feng and D. Li, Catal. Sci. Technol., 6,3027 (2016).
67. M. Lesiak, M. Binczarski, S. Karski, W. Maniukiewicz, J. Rogowski,E. Szubiakiewicz, J. Berlowska, P. Dziugan and I. Witońska, J. Mol.
Catal. A: Chem., 395, 337 (2014).
68. E. Garbowski and M. Primet, J. Chem. Soc., Chem. Commun., 1,11 (1991).
69. H. S. Fogler, Pearson Education (1999).
70. M. G. Jones and T. G. Nevell, J. Catal., 122, 219 (1990).
71. Å. Johansson, M. Försth and A. Rosén, Surf. Sci., 529, 247 (2003).
72. S. A. Singh, K. Vishwanath and G. Madras, ACS Appl. Mater. Interfaces, 9, 19380 (2016).
73. B. D. Mukri and M. S. Hegde, Chem. Sci. J., 129, 1363 (2017).
74. A. Fernández, G. M. Arzac, U. F. Vogt, F. Hosoglu, A. Borgschulte,M. C. Jiménez De Haro, O. Montes and A. Züttel, Appl. Catal. B,180, 336 (2016).