Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received August 7, 2022
Revised November 25, 2022
Accepted December 11, 2022
- Acknowledgements
- We acknowledge financial support from National Natural Science Foundation of China (Nos. 51907173, 21504033, 21673201), Top-notch Academic Programs Project of Jiangsu Higher Education Institutions, China (TAPP). We also acknowledge the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Controllable synthesis of bowl-shaped porous carbon materials through didodecyldimethylammonium bromide for high performance supercapacitors
Abstract
AbstractA series of bowl-shaped porous carbon materials was successfully synthesized by the use of didodecyldimethylammonium bromide as the soft template agent. By controlling the dosage of the soft template agent and the water/
ethanol ratio of the solvent, the size and structure of the carbon materials can be precisely controlled. The prepared carbon materials with stacked bowl structure have good specific surface area (1,380.20 m2
g1
), large pore volume
(1.27 cm3
g1
) and high heteroatom N doping amount (6.68 at.%). Moreover, electrochemical tests in 6 M KOH demonstrated impressive electrochemical performance, where the specific capacity of the typical materials was measured
to be 191.0 F g1
(at the current density of 1 A g1
), and the capacity retention rate of typical materials was 80% (at the
current density of 10 A g1
).
Keywords
References
2. S. A. Shah, D. Kulhanek, W. M. Sun, X. F. Zhao, S. Yu, D. Parviz,J. L. Lutkenhaus and M. J. Green, J. Colloid Interface Sci., 560, 581(2020).
3. R. Liu, S. M. Mahurin, C. Li, R. R. Unocic, J. C. Idrobo, H. J. Gao,S. J. Pennycook and S. Dai, Angew. Chem. Int. Ed., 50, 6799 (2011).
4. Z. L. Jian, S. Hwang, Z. F. Li, A. S. Hernandez, X. F. Wang, Z. Y.Xing, D. Su and X. L. Ji, Adv. Funct. Mater., 27, 1700324 (2017).
5. X. Y. Chen, C. Chen, Z. J. Zhang and D. H. Xie, J. Mater. Chem. A,1, 7379 (2013).
6. S. Cao, T. T. Chen, S. S. Zheng, Y. Bai and H. Pang, Small Methods,5, 2101070 (2021).
7. Z. G. Liang, L. M. Zhang, H. Liu, J. P. Zeng, J. F. Zhou, H. J. Li and H. Xia, Results Phys., 12, 1984 (2019).
8. F. F. Hu, Y. Lin, Y. Qiu, B. Wen, Y. N. Zheng and H. B. Yang, Ceram.Int., 47, 5968 (2021).
9. Y. Qin, L. Miao, M. Mansuer, C. M. Hu, Y. K. Lv, L. H. Gan and M. X. Liu, ACS Appl. Mater. Interfaces, 14, 33328 (2022).
10. X. Liu, P. P. Song, J. H. Hou, B. Wang, F. Xu and X. M. Zhang, ACS Sustain. Chem. Eng., 6, 2797 (2018).
11. W. Z. Li, B. Y. Li, M. Shen, Q. Gao and J. H. Hou, Chem. Eng. J.,384, 123309 (2020).
12. B. Y. Li, Q. Guo, M. Shen, W. Z. Li and Q. Gao, Micropor. Mesopor.Mater., 326, 111379 (2021).
13. S. J. Jia, Q. Guo, M. Shen, Q. Gao and K. Wang, Colloids Surf. A:Physicochem. Eng. Asp., 636, 128064 (2022).
14. Z. Y. Song, H. Duan, L. Miao, L. Ruhlmann, Y. K. Lv, W. Xiong, D. Z.Zhu, L. C. Li, L. H. Gan and M. X. Liu, Carbon, 168, 499 (2020).
15. W. Ma, Q. Zheng, Y. He, G. Li, W. Guo, Z. Lin and L. Zhang, J.Am. Chem. Soc., 141, 18271 (2019).
16. J. Y. Ma, Y. S. Zhang, X. H. Zhang, G. B. Zhu, B. Liu and J. H. Chen,Talanta, 88, 696 (2012).
17. H. R. Wang, H. W. Zhou, M. Gao, Y. A. Zhu, H. T. Liu, L. Gao and M. X. Wu, Electrochim. Acta, 298, 552 (2019).
18. C. C. Yang, W. T. Jing, C. Li and Q. Jiang, J. Mater. Chem. A, 6, 3877(2018).
19. M. Manousakis and A. Avranas, J. Colloid Interface Sci., 402, 237(2013).
20. S. E. Friberg, H. Hasinović, Q. Yin, Z. Q. Zhang and R. Patel, Colloids Surf. A: Physicochem. Eng. Asp., 156, 145 (1999).
21. A. Mahmood, S. Li, Z. S. Ali, H. Tabassum, B. J. Zhu, Z. B. Liang,W. Meng, W. Aftab, W. H. Guo, H. Zhang, M. Yousaf, S. Gao,
R. Q. Zou and Y. S. Zhao, Adv. Mater., 31, 1805430 (2019).
22. Y. X. Zhang, L. Liu, Y. F. Yu, Y. Zhang, S. L. Hou and A. B. Chen, J.Phys. Chem. C, 123, 2801 (2019).
23. X. D. Yang, Y. L. Li, P. X. Zhang, L. N. Sun, X. Z. Ren and H. W.Mi, Carbon, 157, 70 (2020).
24. H. R. Wang, J. Gao, J. Q. Zhu, J. Y. Ma, H. W. Zhou, J. Xiao and M. X. Wu, Electrochim. Acta, 334, 135582 (2020).
25. X. Wu, Y. S. Si, Y. B. Zou, Y. T. Mao, Q. J. Li, S. X. Zhou, M. Chen and L. M. Wu, ACS Appl. Mater. Interfaces, 10, 31664 (2018).
26. J. Du, Y. Zhang, H. X. Wu, S. L. Hou and A. B. Chen, Carbon, 156,523 (2020).
27. H. X. Qu, X. J. Zhang, J. J. Zhan, W. Q. Sun, Z. C. Si and H. K. Chen,ACS Sustain. Chem. Eng., 6, 7380 (2018).
28. D. F. Xue, D. Z. Zhu, W. Xiong, T. C. Cao, Z. W. Wang, Y. K. Lv, L. C.Li, M. X. Liu and L. H. Gan, ACS Sustain. Chem. Eng., 7, 7024(2019).
29. X. J. Zhang, S. J. Hou, Z. B. Ding, G. Zhu, H. R. Tang, Y. C. Hou, T.Lu and L. K. Pan, J. Alloys Compd., 822, 153578 (2020).
30. J. Ding, H. L. Zhang, H. Zhou, J. Feng, X. R. Zheng, C. Zhong, E.paek, W. B. Hu and D. Mitlin, Adv. Mater., 31, 1900429 (2019).
31. H. W. Zhang, O. Noonan, X. D. Huang, Y. N. Yang, C. Xu, L. Zhou and C. Z. Yu, ACS Nano, 10, 4579 (2016).
32. D. Saha, Y. C. Li, Z. H. Bi, J. H. Chen, J. K. Keum, D. K. Hensley,H. A. Grappe, H. M. Meyer, S. Dai, M. P. Paranthaman and A. K.
Naskar, Langmuir, 30, 900 (2014).
33. A. Borenstein, O. Hanna, R. Attias, S. Luski, T. Brousse and D.Aurbach, J. Mater. Chem. A, 5, 12653 (2017).
34. Z. Y. Song, L. Miao, L. C. Li, D. Z. Zhu, L. H. Gan and M. X. Liu,Carbon, 180, 135 (2021).
35. K. Pourreza, N. B. Adeh and N. Mohammadi, J. Energy Storage,30, 101429 (2020).