Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received August 18, 2022
Revised December 12, 2022
Accepted December 18, 2022
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Thermodynamic, economic, as well as risk and reliability analyses of a molten carbonate fuel cell-based combined cooling, heating, and power system
Abstract
A complete thermodynamic analysis of a novel combined cooling, heating, and power (CCHP) system
based on molten carbonate fuel cell (MCFC) as the prime mover, single-effect water-lithium bromide absorption chiller,
polymer fuel cell (PEMFC), as well as heat and hydrogen storage tanks, has been performed. Risk and reliability analyses were performed, which are two of the most significant achievements that have not been previously examined in
similar studies. A thermodynamic analysis was performed on three scenarios, and one of them revealed an energy efficiency of 87.85% and exergy efficiency of 86.62% for the hybrid CCHP system. Also, the results indicated that increasing the fuel consumption factor decreases the M-factor (ratio of production power to the total power and heat production
in the fuel cell) and output hydrogen from the MCFC. The results of system reliability and risk analyses indicate that
the mean times to the first failure of the MCFC, PEMFC, and absorption chiller are 19459.57, 1404.04, and 86104.07
working hours under normal conditions, respectively. In one of the scenarios, the calculated amount of economic efficiency and payback period of investment by calculating the inflation rate are 6.3% and 3.1 years, respectiv
Keywords
References
2. M. Sheykhi, M. Chahartaghi, M. M. Balakheli, S. M. Hashemian,S. M. Miri and N. Rafiee, Energy Convers. Manag., 185, 291 (2019).
3. Z. Liu and I. A. Karimi, Energy Convers. Manag., 171, 1675 (2018).
4. M. Wu, H. Zhang and T. Liao, Int. J. Hydrogen Energy, 42(51), 30156(2017).
5. J. H. Ahn, J. H. Jeong and T. S. Kim, J. Eng. Gas Turbines Power,141(4), 041036 (2019).
6. M. Marefati, M. Mehrpooya and M. B. Shafii, Energy Convers.Manag., 183, 193 (2019).
7. D. Roy, S. Samanta and S. Ghosh, J. Brazilian Soc. Mech. Sci. Eng.,41(3), 112 (2019).
8. B. Ghorbani, M. Mehrpooya and S. A. Mousavi, J. Clean. Prod.,220, 1039 (2019).
9. J. Wang, Y. Chen, N. Lior and W. Li, Energy, 185, 463 (2019).
10. M. Rajabi, M. Mehrpooya, Z. Haibo and Z. Huang, Appl. Energy,253, 113544 (2019).
11. L. Mastropasqua, L. Pierangelo, M. Spinelli, M. C. Romano, S. Campanari and S. Consonni, Int. J. Greenh. Gas Control, 88, 195 (2019).
12. S. Erzen, E. Açıkkalp and A. Hepbasli, Int. J. Hydrogen Energy, 44(42),23741 (2019).
13. A. Salehi, S. M. Mousavi, A. Fasihfar and M. Ravanbakhsh, Int. J.Hydrogen Energy, 44(59), 31488 (2019).
14. M. Spinelli, D. Di Bona, M. Gatti, E. Martelli, F. Viganò and S.Consonni, J. Power Sources, 448, 227223 (2020).
15. E. Açıkkalp, L. Chen and M. H. Ahmadi, Energy Rep., 6, 10 (2020).
16. T. Wejrzanowski, K. Cwieka, J. Skibinski, A. Lysik, S. Haj Ibrahim,J. Milewski, W. Xing and C.-G. Lee, Int. J. Hydrogen Energy, 45,25719 (2019).
17. J.-Y. Ryu, Ar. Ko, S.-H. Park and J.-P. Park, Appl. Therm. Eng., 169,114911 (2020).
18. J. Ahn, S. H. Park, S. Lee, Y. Noh and D. Chang, Int. J. Hydrogen Energy, 43(15), 7525 (2018).
19. X. Guo, H. Zhang, J. Zhao, F. Wang, J. Wang, H. Miao and J. Yuan,Int. J. Ambient Energy, 43, 1986 (2020).
20. R. Chacartegui, B. Monje, D. Sánchez, J. A. Becerra and S. Campanari, Int. J. Greenh. Gas Control, 19, 453 (2013).
21. J. Wang, Y. Liu, F. Ren and S. Lu, Energy, 197, 117313 (2020).
22. J. Rosen, T. Geary, A. Hilmi, R. Blanco-Gutierrez, C.-Y. Yuh, C. S.Pereira, L. Han, R. A. Johnson, C. A. Willman and H. GhezelAyagh, J. Electrochem. Soc., 167(6), 064505 (2020).
23. M. Y.-P. Peng, C. Chen, X. Peng and M. Marefati, Sust. Energy Technol. Assessments, 39, 100713 (2020).
24. M. Chahartaghi and B. A. Kharkeshi, Appl. Therm. Eng., 128, 805(2018).
25. M. Chahartaghi, M. Einanlou and S. M. Hashemian, Appl. Therm.Eng., 193, 116989 (2021).
26. J. P. Pérez-Trujillo, F. Elizalde-Blancas, S. J. McPhail, M. Della Pietra and B. Bosio, Appl. Energy, 263, 114630 (2020).
27. S. Campanari, P. Chiesa and G. Manzolini, Int. J. Greenh. Gas Control, 4(3), 441 (2010).
28. H. Hongliang, H. Zhang, S. Weng and M. Su, J. Power Sources,161(2), 849 (2006).
29. M. Baranak and H. Atakül, J. Power Sources, 172(2), 831 (2007).
30. P. Zhao, J. Wang, L. Gao and Y. Dai, Int. J. Hydrogen Energy, 37(4),3382 (2012).
31. M. Chahartaghi and M. Sheykhi, Energy, 174, 1251 (2019).
32. X. Zhang, R. Zeng, Q. Deng, X. Gu, H. Liu, Y. He, K. Mu, X. Liu,H. Tian and H. Li, Energy Convers. Manag., 199, 111953 (2019).
33. R. E. Sonntag, C. Borgnakke, G. J. Van Wylen and S. Van Wyk, Fundamentals of thermodynamics, 6th ed., vol. 6. Wiley New York (1998).
34. http://www.exergoecology.com/excalc.
35. C. Beggs, Energy: management, supply, and conservation, Routledge(2010).
36. H. J. Stone, D. Paul, S. Millett, G. Hund, K. Mahadevan and K. Judd,Economic Analysis of Stationary PEMFC Systems, 961 (2007).
37. K. Mahadevan, V. Contini, M. Goshe, F. Eubanks and F. Griesemer,2010 Annu. Merit Rev. Proceedings, Dep. Energy Hydrog. Fuel Cells
Progr., 693 (2010).
38. D. Roy, S. Samanta and S. Ghosh, Energy Convers. Manag., 211,112740 (2020).
39. M. Abbasi, M. Chahartaghi and S. M. Hashemian, Energy Convers.Manag., 173, 359 (2018).
40. D. Kumar, Tutorials on Life Cycle Costing and Reliability Engineering (2008).