ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received September 15, 2022
Revised December 6, 2022
Accepted December 8, 2022
Acknowledgements
This research was supported by the Chung-Ang University Graduate Research Scholarship in 2021 and supported by National Research Foundation of Korea (NRF) grant funded by the Korea government (2021M3D1A2043806 and 2021R1F1A1060230).
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Pseudocapacitive behavior of mesoporous tungsten oxide in aqueous Zn2+ electrolyte

1School of Chemical Engineering & Materials Science, Chung-Ang University (CAU), 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea 2Department of Intelligent Energy and Industry, Department of Advanced Materials Engineering, Chung-Ang University (CAU), 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea 3Graduate Institute of Ferrous & Energy Materials Technology (GIFT), Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea 4Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
inhonam@cau.ac.kr, jochangshin@postech.ac.kr
Korean Journal of Chemical Engineering, June 2023, 40(6), 1353-1359(7), 10.1007/s11814-022-1370-2
downloadDownload PDF

Abstract

Aqueous Zn-ion batteries or capacitors have attracted great interest for their potential use in grid-scale energy storage systems (ESSs). They have suitable properties such as high safety, low-cost materials, and stability of Zn2+ in aqueous systems. The anode of these systems is mainly based on metallic Zn; however, corrosion of the metal surface and formation of dendrites inhibit their long-term cycle stability. It is thus necessary to find a material that can host Zn2+ in a low voltage range and enhance the electrochemical performance. Among various possible strategies, herein we applied nanostructuring to prepare mesoporous WO3 as anode material and compared the change in the electrochemical performance to that of bulk WO3. After unveiling the effect of the nanostructure, we conclude that the present nanomaterials show great potential as electrode materials for aqueous Zn-ion systems.

References

1. Y. Qiu and F. Jiang, Int. J. Heat Mass Transf., 184, 122288 (2022).
2. R. Sebastian, Process Saf. Prog., 41, 426 (2022).
3. Y. Chen, Y. Kang, Y. Zhao, L. Wang, J. Liu, Y. Li, Z. Liang, X. He,X. Li, N. Tavajohi and B. Li, J. Energy Chem., 59, 83 (2021).
4. B. Tang, L. Shan, S. Liang and J. Zhou, Energy Environ. Sci., 12, 3288(2019).
5. T. Xiong, Y. Zhang, W. S. V. Lee and J. Xue, Adv. Energy Mater., 10,2001769 (2020).
6. S. Guo, L. Qin, T. Zhang, M. Zhou, J. Zhou, G. Fang and S. Liang,Energy Stor. Mater., 34, 545 (2021).
7. Z. Yi, G. Chen, F. Hou, L. Wang and J. Liang, Adv. Energy Mater.,11, 2003065 (2021).
8. Q. Yang, Q. Li, Z. Liu, D. Wang, Y. Guo, X. Li, Y. Tang, H. Li, B.Dong and C. Zhi, Adv. Mater., 32, 2001854 (2020).
9. T. Zhang, Y. Tang, S. Guo, X. Cao, A. Pan, G. Fang, J. Zhou and S.Liang, Energy Environ. Sci., 13, 4625 (2020).
10. T. Xiong, Y. Zhang, Y. Wang, W. S. V. Lee and J. Xue, J. Mater.Chem. A, 8, 9006 (2020).
11. C. Jo, I. Hwang, J. Lee, C. W. Lee and S. Yoon, J. Phys. Chem. C, 115,11880 (2011).
12. A. Martínez-de la Cruz, L. M. Torres-Martínez, F. García-Alvarado,E. Morán and M. A. Alario-Franco, J. Mater. Chem., 8, 1805 (1998).
13. X. Xiao, T. Ding, L. Yuan, Y. Shen, Q. Zhong, X. Zhang, Y. Cao, B.Hu, T. Zhai, L. Gong, J. Chen, Y. Tong, J. Zhou and Z. L. Wang,
Adv. Energy Mater., 2, 1328 (2012).
14. X. Chen, R. Huang, M. Ding, H. He, F. Wang and S. Yin, ACSAppl. Mater. Interfaces, 14, 3961 (2022).
15. Y. Xia, T. Zhao, X. Zhu, Y. Zhao, H. He, C.-t. Hung, X. Zhang, Y.Chen, X. Tang, J. Wang, W. Li and D. Zhao, Nat. Commun., 12,2973 (2021).
16. F. Schipper, H. Bouzaglo, M. Dixit, E. M. Erickson, T. Weigel, M.Talianker, J. Grinblat, L. Burstein, M. Schmidt, J. Lampert, C. Erk,
B. Markovsky, D. T. Major and D. Aurbach, Adv. Energy Mater., 8,1701682 (2018).
17. J. Cho, Y. J. Kim, T.-J. Kim and B. Park, Angew. Chem. Int. Ed., 40,3367 (2001).
18. J. Meng, Q. He, L. Xu, X. Zhang, F. Liu, X. Wang, Q. Li, X. Xu, G.Zhang, C. Niu, Z. Xiao, Z. Liu, Z. Zhu, Y. Zhao and L. Mai, Adv.Energy Mater., 9, 1802695 (2019).
19. N. M. Trease, I. D. Seymour, M. D. Radin, H. Liu, H. Liu, S. Hy, N.Chernova, P. Parikh, A. Devaraj, K. M. Wiaderek, P. J. Chupas,K. W. Chapman, M. S. Whittingham, Y. S. Meng, A. Van der Van
and C. P. Grey, Chem. Mater., 28, 8170 (2016).
20. D. Xu, B. Li, C. Wei, Y.-B. He, H. Du, X. Chu, X. Qin, Q.-H. Yang and F. Kang, Electrochim. Acta, 133, 254 (2014).21. H. Luo, B. Wang, F. Wu, J. Jian, K. Yang, F. Jin, B. Cong, Y. Ning, Y.Zhou, D. Wang, H. Liu and S. Dou, Nano Energy, 81, 105601(2021).
22. E. Lim, C. Jo, H. Kim, M.-H. Kim, Y. Mun, J. Chun, Y. Ye, J.Hwang, K.-S. Ha, K. C. Roh, K. Kang, S. Yoon and J. Lee, ACS Nano, 9, 7497 (2015).
23. Q. Wang, Z. H. Wen and J. H. Li, Adv. Funct. Mater., 16, 2141(2006).
24. H. Kim, M.-Y. Cho, M.-H. Kim, K.-Y. Park, H. Gwon, Y. Lee, K.C. Roh and K. Kang, Adv. Energy Mater., 3, 1500 (2013).
25. H.-G. Jung, N. Venugopal, B. Scrosati and Y.-K. Sun, J. Power Sources, 221, 266 (2013).
26. X.-L. Wu, Y.-G. Guo, J. Su, J.-W. Xiong, Y.-L. Zhang and L.-J. Wan,Adv. Energy Mater., 3, 1155 (2013).
27. F. Kleitz, S. Hei Choi and R. Ryoo, ChemComm, 2136 (2003).
28. S. Yoon, E. Kang, J. K. Kim, C. W. Lee and J. Lee, ChemComm, 47,1021 (2011).
29. E. Kang, S. An, S. Yoon, J. K. Kim and J. Lee, J. Mater. Chem., 20,7416 (2010).
30. M. Lübke, A. Sumboja, I. D. Johnson, D. J. L. Brett, P. R. Shearing,Z. Liu and J. A. Darr, Electrochim. Acta, 192, 363 (2016).
31. M. Hočevar and U. Opara Krašovec, Sol. Energy Mater. Sol. Cells.,154, 57 (2016).
32. J. Wang, J. Polleux, J. Lim and B. Dunn, J. Phys. Chem. C, 111,14925 (2007)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로