Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received September 15, 2022
Revised December 6, 2022
Accepted December 8, 2022
- Acknowledgements
- This research was supported by the Chung-Ang University Graduate Research Scholarship in 2021 and supported by National Research Foundation of Korea (NRF) grant funded by the Korea government (2021M3D1A2043806 and 2021R1F1A1060230).
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Pseudocapacitive behavior of mesoporous tungsten oxide in aqueous Zn2+ electrolyte
Abstract
Aqueous Zn-ion batteries or capacitors have attracted great interest for their potential use in grid-scale
energy storage systems (ESSs). They have suitable properties such as high safety, low-cost materials, and stability of
Zn2+ in aqueous systems. The anode of these systems is mainly based on metallic Zn; however, corrosion of the metal
surface and formation of dendrites inhibit their long-term cycle stability. It is thus necessary to find a material that can
host Zn2+ in a low voltage range and enhance the electrochemical performance. Among various possible strategies,
herein we applied nanostructuring to prepare mesoporous WO3 as anode material and compared the change in the
electrochemical performance to that of bulk WO3. After unveiling the effect of the nanostructure, we conclude that the
present nanomaterials show great potential as electrode materials for aqueous Zn-ion systems.
Keywords
References
2. R. Sebastian, Process Saf. Prog., 41, 426 (2022).
3. Y. Chen, Y. Kang, Y. Zhao, L. Wang, J. Liu, Y. Li, Z. Liang, X. He,X. Li, N. Tavajohi and B. Li, J. Energy Chem., 59, 83 (2021).
4. B. Tang, L. Shan, S. Liang and J. Zhou, Energy Environ. Sci., 12, 3288(2019).
5. T. Xiong, Y. Zhang, W. S. V. Lee and J. Xue, Adv. Energy Mater., 10,2001769 (2020).
6. S. Guo, L. Qin, T. Zhang, M. Zhou, J. Zhou, G. Fang and S. Liang,Energy Stor. Mater., 34, 545 (2021).
7. Z. Yi, G. Chen, F. Hou, L. Wang and J. Liang, Adv. Energy Mater.,11, 2003065 (2021).
8. Q. Yang, Q. Li, Z. Liu, D. Wang, Y. Guo, X. Li, Y. Tang, H. Li, B.Dong and C. Zhi, Adv. Mater., 32, 2001854 (2020).
9. T. Zhang, Y. Tang, S. Guo, X. Cao, A. Pan, G. Fang, J. Zhou and S.Liang, Energy Environ. Sci., 13, 4625 (2020).
10. T. Xiong, Y. Zhang, Y. Wang, W. S. V. Lee and J. Xue, J. Mater.Chem. A, 8, 9006 (2020).
11. C. Jo, I. Hwang, J. Lee, C. W. Lee and S. Yoon, J. Phys. Chem. C, 115,11880 (2011).
12. A. Martínez-de la Cruz, L. M. Torres-Martínez, F. García-Alvarado,E. Morán and M. A. Alario-Franco, J. Mater. Chem., 8, 1805 (1998).
13. X. Xiao, T. Ding, L. Yuan, Y. Shen, Q. Zhong, X. Zhang, Y. Cao, B.Hu, T. Zhai, L. Gong, J. Chen, Y. Tong, J. Zhou and Z. L. Wang,
Adv. Energy Mater., 2, 1328 (2012).
14. X. Chen, R. Huang, M. Ding, H. He, F. Wang and S. Yin, ACSAppl. Mater. Interfaces, 14, 3961 (2022).
15. Y. Xia, T. Zhao, X. Zhu, Y. Zhao, H. He, C.-t. Hung, X. Zhang, Y.Chen, X. Tang, J. Wang, W. Li and D. Zhao, Nat. Commun., 12,2973 (2021).
16. F. Schipper, H. Bouzaglo, M. Dixit, E. M. Erickson, T. Weigel, M.Talianker, J. Grinblat, L. Burstein, M. Schmidt, J. Lampert, C. Erk,
B. Markovsky, D. T. Major and D. Aurbach, Adv. Energy Mater., 8,1701682 (2018).
17. J. Cho, Y. J. Kim, T.-J. Kim and B. Park, Angew. Chem. Int. Ed., 40,3367 (2001).
18. J. Meng, Q. He, L. Xu, X. Zhang, F. Liu, X. Wang, Q. Li, X. Xu, G.Zhang, C. Niu, Z. Xiao, Z. Liu, Z. Zhu, Y. Zhao and L. Mai, Adv.Energy Mater., 9, 1802695 (2019).
19. N. M. Trease, I. D. Seymour, M. D. Radin, H. Liu, H. Liu, S. Hy, N.Chernova, P. Parikh, A. Devaraj, K. M. Wiaderek, P. J. Chupas,K. W. Chapman, M. S. Whittingham, Y. S. Meng, A. Van der Van
and C. P. Grey, Chem. Mater., 28, 8170 (2016).
20. D. Xu, B. Li, C. Wei, Y.-B. He, H. Du, X. Chu, X. Qin, Q.-H. Yang and F. Kang, Electrochim. Acta, 133, 254 (2014).21. H. Luo, B. Wang, F. Wu, J. Jian, K. Yang, F. Jin, B. Cong, Y. Ning, Y.Zhou, D. Wang, H. Liu and S. Dou, Nano Energy, 81, 105601(2021).
22. E. Lim, C. Jo, H. Kim, M.-H. Kim, Y. Mun, J. Chun, Y. Ye, J.Hwang, K.-S. Ha, K. C. Roh, K. Kang, S. Yoon and J. Lee, ACS Nano, 9, 7497 (2015).
23. Q. Wang, Z. H. Wen and J. H. Li, Adv. Funct. Mater., 16, 2141(2006).
24. H. Kim, M.-Y. Cho, M.-H. Kim, K.-Y. Park, H. Gwon, Y. Lee, K.C. Roh and K. Kang, Adv. Energy Mater., 3, 1500 (2013).
25. H.-G. Jung, N. Venugopal, B. Scrosati and Y.-K. Sun, J. Power Sources, 221, 266 (2013).
26. X.-L. Wu, Y.-G. Guo, J. Su, J.-W. Xiong, Y.-L. Zhang and L.-J. Wan,Adv. Energy Mater., 3, 1155 (2013).
27. F. Kleitz, S. Hei Choi and R. Ryoo, ChemComm, 2136 (2003).
28. S. Yoon, E. Kang, J. K. Kim, C. W. Lee and J. Lee, ChemComm, 47,1021 (2011).
29. E. Kang, S. An, S. Yoon, J. K. Kim and J. Lee, J. Mater. Chem., 20,7416 (2010).
30. M. Lübke, A. Sumboja, I. D. Johnson, D. J. L. Brett, P. R. Shearing,Z. Liu and J. A. Darr, Electrochim. Acta, 192, 363 (2016).
31. M. Hočevar and U. Opara Krašovec, Sol. Energy Mater. Sol. Cells.,154, 57 (2016).
32. J. Wang, J. Polleux, J. Lim and B. Dunn, J. Phys. Chem. C, 111,14925 (2007)