ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 4, 2022
Revised November 15, 2022
Accepted November 21, 2022
Acknowledgements
The Authors Soremo L Ezung, Mridushmita Baruah, and Shisak Sharma are grateful to University Grants Commission, New Delhi for the UGC Non-NET fellowship (PF/RDC/NNF-72/2018- 2912, PF/RDC/NNF-41/2017-1521, and NU/RDC/NNF-82/2020- 928). Suraj Kumar acknowledges the financial assistance from the Department of Science and Technology as INSPIRE Fellowship (IF190895). Support under DST-FIST (No. SR/FST/CSI-276/2016(C)) is also acknowledged.
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Photocatalytic degradation of the organophosphorus insecticide chlorpyrifos in aqueous suspensions using a novel activated carbon ZrO2-ZnO nanocomposite under UV light

Department of Chemistry, Nagaland University, Lumami-798627, Nagaland, India
dipaksinha@gmail.com
Korean Journal of Chemical Engineering, June 2023, 40(6), 1360-1372(13), 10.1007/s11814-022-1354-2
downloadDownload PDF

Abstract

This paper describes the photocatalytic degradation of the organophosphorus insecticide chlorpyrifos in aqueous suspensions using Schima wallichii activated carbon/ZrO2-ZnO (SWAC/ZrO2-ZnO) nanocomposite in UV light. Analytical techniques such as XRD, FT-IR, TEM-SEAD, XPS, PL, and BET analyzer were used to characterize the SWAC/ZrO2-ZnO nanocomposite. The BET surface area of the photocatalyst was found to be 223.387 m²g1 , having a total pore volume of 0.1845 cm3 g 1 . The photocatalytic degradation of chlorpyrifos followed pseudo-first-order rate kinetics with a half-life period (t1/2) of 7.088 mins and Kap (apparent rate constant) of 0.09778 min1 . The mechanism of composite formation was explained using DFT investigations, which demonstrated a favorable immobilization of ZrO2- ZnO on SWAC. Chemical descriptors gained from DFT investigations, such as HOMO-LUMO energy, ionization energy, dipole moment, chemical softness, and chemical hardness, supported an understanding of the relative efficiency and reactivity of ZrO2-ZnO and SWAC/ZrO2-ZnO towards chlorpyrifos degradatio

References

1. S. Das and T. K. Adhya, J. Environ. Manage., 152, 36 (2015).
2. Z. Chishti, S. Hussain, K. R. Arshad, A. Khalid and M. Arshad, J.Environ. Manage., 114, 372 (2013).
3. Y. Samet, L. Agengui and R. Abdelhédi, Chem. Eng. J., 161, 167(2010).
4. M. N. Mori, H. Oikawa, M. H. O. Sampa and C. L. Duarte, J. Radioanal. Nucl. Chem., 270, 99 (2006).
5. K. Maya, R. S. Singh, S. N. Upadhyay and S. K. Dubey, Process Biochem., 46, 2130 (2011).
6. M. M. Jacob, M. Ponnuchamy, A. Kapoor and P. Sivaraman, J. Environ. Chem. Eng., 8 103904 (2020).
7. M. Samy, M. G. Ibrahim, M. Gar Alalm, M. Fujii, K. E. Diab and M. ElKady, Chem. Eng. J., 395, 124974 (2020).
8. D. Pathania, A. Sharma, S. Kumar, A. K. Srivastava and A. Kumar,Chemosphere, 277, 130315 (2021).
9. E. S. Agorku, A. T. Kuvarega, B. B. Mamba, A. C. Pandey and A. K.Mishra, J. Rare Earths, 33, 498 (2015).
10. E. D. Sherly, J. J. Vijaya, N. C. S. Selvam and L. J. Kennedy, Ceram.Int., 40, 5681 (2014).
11. V. K. Gupta, D. Pathania, P. Singh, B. S. Rathore and P. Chauhan,Carbohydr. Polym., 95, 434 (2013).
12. T. A. Saleh, M. A. Gondal, Q. A. Drmosh, Z. H. Yamani and A. ALyamani, Chem. Eng. J., 166, 407 (2011).
13. O. Benton, S. Apollo, B. Naidoo and A. Ochieng, Chem. Eng. Commun., 203, 1443 (2016).
14. H. Anwer and J. W. Park, J. Hazard. Mater., 358, 416 (2018).
15. A. I. Vaizoğullar, Mater. Technol., 34, 433 (2019).
16. H. F. Wu, C. C. Lin and P. Shen, J. Non-Cryst. Solids, 209, 76 (1997).
17. P. Muthirulan, M. Meenakshisundararam and N. Kannan, J. Adv.Res., 4, 479 (2013).
18. M. Zbair, Z. Anfar, H. A. Ahsaine, N. El Alem and M. Ezahri, J.Environ. Manage., 206, 383 (2018).
19. X. Chen, X. Xu, J. Cui, C. Chen, X. Zhu, D. Sun and J. Qian, J.Hazard. Mater., 392, 122331 (2020).
20. J. Matos, J. Laine and J. M. Herrmann, J. Catal., 200, 10 (2001).
21. M. Baruah, S. L. Ezung, A. Supong, P. C. Bhomick, S. Kumar and D. Sinha, Korean J. Chem. Eng., 38, 1277 (2021).
22. D. Mohanta and M. Ahmaruzzaman, J. Environ. Chem. Eng., 6,356 (2018).
23. M. Baruah, A. Supong, P. Chandra, B. Rituparna and K. Chubaakum, Nanotechnol. Environ. Eng., 5, 1 (2020).
24. T. N. V. de Souza, S. M. L. de Carvalho, M. G. A. Vieira, M. G. C.da Silva and D. D. S. B. Brasil, Appl. Surf. Sci., 448, 662 (2018).
25. H. Ullah, A. A. Tahir and T. K. Mallick, Sens. Actuators, B Chem.,241, 1161 (2017).
26. A. Supong, P. C. Bhomick, M. Baruah, C. Pongener, U. B. Sinha and D. Sinha, Sustain. Chem. Pharm., 13, 100159 (2019).
27. A. Shokufeh, Res. J. Chem. Environ., 19, 28 (2015).
28. P. C. C. Faria, J. J. M. Órfão and M. F. R. Pereira, Water Res., 38, 2043(2004).
29. B. Padak and J. Wilcox, Carbon, 47, 2855 (2009).
30. L. R. Radovic, Carbon, 43, 907 (2005).
31. J. R. Pliego, S. M. Resende and E. Humeres, Chem. Phys., 314, 127(2005).
32. S. L. Ezung, M. Baruah, A. Supong, S. Sharma and D. Sinha, Sustain. Chem. Pharm., 26, 100643 (2022).
33. S. Kumar, S. Sharma, R. Karmaker and D. Sinha, Mater. Today Commun., 26, 101755 (2021).
34. G. Q. Blantocas, A. S. Alaboodi and H. M. Abdel-baset, Arab. J. Sci.Eng., 43, 389 (2018).
35. A. Bendjeddou, T. Abbaz, A. K. Gouasmia and D. Villemin, Int.Res. J. Pure Appl. Chem., 12, 1 (2016).
36. A. Bendjeddou, T. Abbaz, S. Maache, R. Rehamnia, A. K. Gouasmia and D. Villemin, Rasayan J. Chem., 6, 32 (2016).
37. S. Pratihar and S. Roy, J. Org. Chem., 75, 4957 (2010).
38. A. Supong, P. C. Bhomick, U. B. Sinha and D. Sinha, Korean J.Chem. Eng., 36, 2023 (2019).
39. D. Angin, Fuel, 115, 804 (2014).
40. M. M. Ibrahim, Spectrochim. Acta A., 145, 487 (2015).
41. M. Obaidullah, T. Furusawa, I. A. Siddiquey, N. M. Bahadur, M.Sato and N. Suzuki, Adv. Powder Technol., 29, 1804 (2018).
42. N. Nasseh, F. S. Arghavan, S. Rodriguez-Couto, A. H. Panahi, M.Esmati and T. J. A-Musawi Adv. Powder Technol., 31, 875 (2020).
43. L. Gao and Y. Wei, J. Sep. Sci., 39, 3186 (2016).
44. S. Joshi and B. P. Pokharel, J. Inst. Eng., 9, 79 (2013).
45. X. Liu, C. He, X. Yu, Y. Bai, L. Ye, B. Wang and L. Zhang, Powder Technol., 326, 181 (2018).
46. I. I. Gurten, M. Ozmak, E. Yagmur and Z. Aktas, Biomass Bioenergy, 37, 73 (2012).
47. A. Allwar, J. Appl. Chem., 2, 9 (2012).
48. D. Krishnaiah, C. G. Joseph, S. M. Anisuzzaman, W. M. A. W. Daud,M. Sundang and Y. C. Leow, Korean J. Chem. Eng., 34, 1377 (2017).
49. P. C. Bhomick, A. Supong, M. Baruah and C. Pongener, Sustain.Chem. Pharm., 10, 41 (2018).
50. A. Behbahani, S. Rowshanzamir and A. Esmaeilifar, Procedia Eng.,42, 908 (2012).
51. O. Długosz, K. Szostak and M. Banach, Appl. Nanosci., 10, 941 (2020).
52. A. Quintana, A. Altube, E. García-Lecina, S. Suriñach, M. D. Baró,J. Sort, E. Pellicer and M. Guerrero, J. Mater. Sci., 52, 13779 (2017).
53. K. Mishra, S. H. Kim and Y. R. Lee, ChemSusChem, 12, 881 (2019).
54. S. B. Khan, K. A. Alamry, H. M. Marwani, A. M. Asiri and M. M.Rahman, Compos. Part B Eng., 50, 253 (2013).
55. R. Shen, J. Xie, P. Guo, L. Chen, X. Chen and X. Li, ACS Appl.Energy Mater., 1, 2232 (2018).
56. M. Baruah, S. L. Ezung, S. Sharma, U. B. Sinha and D. Sinha, Inorg.Chem. Commun., 144, 109905 (2022).
57. R. Nekooie, T. Shamspur and A. Mostafavi, J. Photochem. Photobiol. A Chem., 407, 113038 (2021).
58. R. Mansourian, S. M. Mousavi, S. Alizadeh and S. Sabbaghi, Can.J. Chem. Eng., 100, 451 (2022).
59. M. M. Jacob, M. Ponnuchamy, A. Kapoor and P. Sivaraman, J.Environ. Chem. Eng., 8, 103904 (2020).
60. A. Saljooqi, T. Shamspur and A. Mostafavi, Environ. Sci. Pollut.Res., 28, 9146 (2021).
61. P. He, J. Wu, X. Jiang, W. Pan and J. Ren, Appl. Surf. Sci., 258, 8853(2012).
62. C. A. Anyama, B. I. Ita, A. A. Ayi, H. Louis, E. E. D. Okon, J. O.Ogar and C. O. Oseghale, ACS Omega, 6, 28967 (2021).
63. E. E. Ekpenyong, H. Louis, C. A. Anyama, J. O. Ogar, P. M. Utsu and A. A. Ayi, J. Mol. Struct., 1220, 128641 (2020).
64. M. A. Daiem, A. A. Alotaibi, E. M. Alosime, B. Zaidi and N. Said,Pol. J. Environ. Stud., 29, 3535 (2020).
65. T. S. Anirudhan, F. Shainy, V. C. Sekhar and V. S. Athira, J. Photochem. Photobiol. A Chem., 418, 113333 (2021).
66. S. H. Khan, B. Pathak and M. H. Fulekar, Nanotechnol. Environ.Eng., 3, 13 (2018).
67. D. Ayodhya and G. Veerabhadram, J. Mater., 5, 446 (2019).
68. P. S. Thind, D. Kumari and S. John, J. Environ. Chem. Eng., 6, 3602(2018).
69. D. Majhi, Y. P. Bhoi, P. K. Samal and B. G. Mishra, Appl. Surf. Sci.,455, 891 (2018).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로