ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received August 9, 2022
Revised November 3, 2022
Accepted November 6, 2022
Acknowledgements
Authors would like to acknowledge the project titled “Innovative impulses reducing the water footprint of the global cotton-textile industry towards the UN Sustainable Development Goals (InoCottonGROW)” funded by the German Federal Ministry of Education and Research (BMBF) under funding code 02WGR1422A. Authors would also like to acknowledge the management and technical staff of the Kohinoor Textile Mills Limited (KTML) Rawalpindi, Pakistan for their support during this research work. Authors would also lik
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Performance and cost-benefit analysis of anaerobic moving bed biofilm reactor for pretreatment of textile wastewater

1Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan 2Institut für Siedlungswasserbau, Wassergüte und Abfallwirtschaft Universität Stuttgart, Stuttgart, Germany 3Forschungsinstitut für Wasser-und Abfallwirtschaft an der RWTH Aachen (FiW) e.V., Aachen, Germany
s.jamal@iese.nust.edu.pk, sherjamal77@gmail.com
Korean Journal of Chemical Engineering, June 2023, 40(6), 1389-1400(12), 10.1007/s11814-022-1334-6
downloadDownload PDF

Abstract

Performance of an anaerobic moving bed biofilm reactor (AnMBBR) was evaluated for pretreatment of real textile desizing wastewater at organic loading rate (OLR) of 1±0.05 to 6.3±0.37 kgCOD/m3 /d. After OLR optimization, the performance of AnMBBR was evaluated for biodegradation of reactive dyes. AnMBBR was operated under a mesophilic temperature range of 30 to 36 o C, while the oxidation-reduction potential (ORP) and pH were in the range of 504 to 594 (-mV) and 6.98 to 7.28, respectively. By increasing the OLR from 1±0.05 to 6.3±0.37 kgCOD/m3 /d, COD and BOD5 removal was decreased from 84 to 39% and 89 to 49%, respectively. While the production of biogas was increased from 0.12 to 0.83 L/L·d up to an optimum OLR of 4.9±0.43 kgCOD/m3 /d. With increase in the dye concentration in the feed, COD, BOD5, color removal and biogas production reduced from 56, 63, 70% and 0.65 L/L·d to 34, 43, 41% and 0.08 L/L·d, respectively. Based on the data obtained, a cost-benefit analysis of AnMBBR was also investigated for the pretreatment of real textile desizing wastewater. Cost estimation of anaerobic pretreatment of textile desizing wastewater indicated a net profit of 21.09 million PKR/yr (114,000 €/yr) and a potential payback period of 2.54 years

References

1. D. Yaseen and M. Scholz, Int. J. Environ. Sci. Technol., 16, 1193(2019).
2. S. Khan and A. Malik, Environmental and health effects of textile industry wastewater, in: Environmental deterioration and human health, Springer, Dordrecht, 55 (2014).
3. P. Kaur, V. Sangal and J. Kushwaha, Int. J. Environ. Sci. Technol., 16,801 (2019).
4. C.-Y. Lin, M.-L. T. Nguyen and C.-H. Lay, J. Cleaner Prod., 168,331 (2017).
5. G. Pei, F. Yu and J. Liu, J. Residuals Sci. Technol., 12 (2015).
6. M. Saleem, S. Khan and H. Shahzad, Int. J. Environ. Sci. Technol.,19, 10325 (2022).
7. V. Jegatheesan, B. K. Pramanik, J. Chen, D. Navaratna, C.-Y. Chang and L. Shu, Bioresour. Technol., 204, 202 (2016).
8. I. A. Abbasi, A. F. Soomro, S. A. Abbasi, N. A. Abbasi, Z. T. Baig and A. Junejo, Int. J. Emerging Technol., 12, 54 (2021).
9. S.-h. Shin, Y.-h. Kim, S.-K. Jung, K.-H. Sun, S.-G. Kang, S.-K. Jeong and H.-G. Kim, Korean J. Chem. Eng., 21, 806 (2004).
10. A. Yasar, S. Khalil, A. B. Tabinda and A. Malik, Korean J. Chem.Eng., 30, 131 (2013).
11. M. Ahmadi, P. Amiri and N. Amiri, Korean J. Chem. Eng., 32,1327 (2015).
12. P. Kumar, B. Prasad, I. Mishra and S. Chand, J. Hazard. Mater.,149, 26 (2007).
13. K. Opwis, T. Mayer-Gall, J. S. Gutmann, C. Dammer, T. Titscher,A. Nickisch-Hartfiel, O. Grün, C. Spurk, C. Schloderer and A.Köppe, Energy Sustainability Soc., 2, 1 (2012).
14. H. M. A. Shahzad, C. Baumann, S. J. Khan, H. Schönberger, F.-A.Weber and Zeshan, Desalin. Water Treat., 181, 123 (2020).
15. R. Shoukat, S.J. Khan and Y. Jamal, J. Water Process Eng., 29, 100804(2019).
16. R. Dinsdale, K. Bryne and D. Tucker, The anaerobic digestion of textile desizing wastewater, Ecotextiles, Woodhead Publishing Elsevier, United Kingdom, 163 (2007).
17. M. Javaid, A. R. Saleemi, S. Naveed, M. Zafar and N. Ramzan, J.Pak. Inst. Chem. Eng., 39, 61 (2011).
18. L. Rongrong, L. Xujie, T. Qing, Y. Bo and C. Jihua, Desalination,271, 287 (2011).
19. M. Z. Khan, S. Singh, T. Sreekrishnan and S. Ahammad, RSC Adv.,4, 46851 (2014).
20. X. Xiao, T.-T. Li, X.-R. Lu, X.-L. Feng, X. Han, W.-W. Li, Q. Li and H.-Q. Yu, Bioresour. Technol., 251, 204 (2018).
21. Y. Lee, R. Matthews and S. Pavlostathis, Water Sci. Technol., 52,377 (2005).
22. A. Di Biase, T. Devlin, M. Kowalski and J. Oleszkiewicz, J. Environ. Manage., 216, 392 (2018).
23. F. Castro, J. Bassin, T. Alves, G. Sant’Anna and M. Dezotti, Int. J.Environ. Sci. Technol., 18, 1991 (2021).
24. S. Wang, N. C. Rao, R. Qiu and R. Moletta, Bioresour. Technol., 100,5641 (2009).
25. S. Chai, J. Guo, Y. Chai, J. Cai and L. Gao, Desalin. Water Treat.,52, 1841 (2014).
26. H.-C. Kim, J. Shin, S. Won, J.-Y. Lee, S. K. Maeng and K. G. Song,Water Res., 71, 97 (2015).
27. F. Morgan-Sagastume, S. Jacobsson, L. Olsson, M. Carlsson, M.Gyllenhammar and I. S. Horváth, Water Res., 163, 114851 (2019).
28. A. Sabzali, M. Nikaeen and B. Bina, Environ. Technol., 33, 1803(2012).
29. C. Fang, K. Boe and I. Angelidaki, Bioresour. Technol., 102, 5734(2011).
30. H. Shahzad, S. Khan and Z. Habib, Water Practice Technol., 17,157 (2022).
31. APHA, Standard Methods for the Examination Of Water And Wastewater, American Public Health Association, American Water Works Association, Water Environment Federation (2017).
32. K. Sarayu and S. Sandhya, Appl. Biochem. Biotechnol., 167, 645(2012).
33. S. R. Hassan, N. Q. Zaman and I. Dahlan, KSCE J. Civ. Eng., 19,1271 (2015).
34. S. Bi, W. Qiao, L. Xiong, M. Ricci, F. Adani and R. Dong, Renew.Energy, 139, 242 (2019).
35. M. A. Musa, S. Idrus, C. M. Hasfalina and N. N. N. Daud, Int. J.Environ. Res. Public Health, 15, 2220 (2018).
36. M. A. Musa and S. Idrus, Water, 12, 490 (2020).
37. H. M. A. Shahzad, S. J. Khan, Y. Jamal and Z. Habib, Biochem. Eng.J., 174, 108123 (2021).
38. J. R. Banu, S. Kaliappan and D. Beck, Water Qual. Res. J., 41, 56 (2006).
39. M. A. Musa, S. Idrus, H. Che Man and N. N. Nik Daud, Water, 11,806 (2019).
40. O. Alepu, Z. Li, H. Ikhumhen, L. Kalakodio, K. Wang and G. Segun,Int. J. Waste Resour., 6(3), 1 (2016).
41. W. Somasiri, L. Xiufen, W. Ruan and J. Chen, Elec. J. Env. Agricult.Food Chem., 1, 3461 (2008).
42. G. N. Sheth and A. A. Musale, Indian J. Fibre Text. Res., 29(4), 462(2004).
43. C. Baumann, Thesis Title: Anaerobic Digestion of Desizing Wastewater in Pakistan, in: Urban Water and Municipal Waste Management, RWTH Aachen University, 1 (2018).
44. DWA, Arbeitsblatt (Worksheet) DWA-A 131: Bemessung von einstufigen Belebungsanlagen (Dimensioning of single-stage activated
sludge systems), Deutsche Vereinigung für Wasserwirtschaft,Abwasser und Abfall e. V., Hennef, Germany (2016).
45. DWA, Merkblatt DWA-M 229-1: Systeme zur Belüftung und Durchmischung von Belebungsanlagen (Systems for ventilation
and mixing of aeration systems), Die Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e. V., Hennef, Germany(2017).
46. DWA, Merkblatt DWA-M363: Herkunft, Aufbereitung und Verwertung von Biogasen (Origin, processing and utilization of biogases), Die Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e. V., Hennef, Germany (2010).
47. DWA, Arbeitsgruppe IG-5.1: Betriebskosten/Betriebsaufwand der Anaerobtechnik in der Industrieabwasserbehandlung (Operating
costs / operating expenses of anaerobic technology in industrial wastewater treatment) (2014).
48. H. Meyer, Leistungsfähigkeit anaerober Reaktoren zur Industrieabwasserreinigung (Performance of anaerobic reactors for industrial wastewater treatment), ISAH, Inst. für Siedlungswasserwirtschaft und Abfalltechnik der Univ. Hannover (2004).
49. H. Schönberger, Integrated Best Available Wastewater Management in the Textile Industry, 2018, 35 (2018)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로