ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received August 11, 2022
Revised October 4, 2022
Accepted November 1, 2022
Acknowledgements
This work was supported by the Heilongjiang Provincial Natural Science Foundation of China (LH2019D002).
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Synergistic and sustainable activation of peroxymonosulfate by nanoscale MWCNTs-CuFe2O4 as a magnetic heterogeneous catalyst for the efficient removal of levofloxacin

College of Forestry, Northeast Forestry University, Harbin 150040, China
xpfawd@nefu.edu.cn
Korean Journal of Chemical Engineering, June 2023, 40(6), 1401-1417(17), 10.1007/s11814-022-1332-8
downloadDownload PDF

Abstract

Nanoscale CuFe2O4 was anchored on the surface of multiwalled carbon nanotubes (MWCNTs) as a magnetic heterogeneous catalyst to achieve efficient and sustainable activation of peroxymonosulfate and degradation of levofloxacin through the synergistic effect of the above materials. The catalyst properties were characterized by a series of detection techniques. It was found that the mass ratio of MWCNTs-CuFe2O4, operational parameters and common interfering substances influenced the levofloxacin removal efficiency to a certain extent. This study sheds light on the ultraefficient removal of levofloxacin with the MWCNTs-CuFe2O4(1 : 3)/peroxymonosulfate system, which has advantages over other reaction systems. More importantly, we propose two pathways of peroxymonosulfate activation, including free radicals and nonfree radicals, in which superoxide radicals and signal oxygen are the main active species. In addition, we observed that the MWCNT surface groups contributed to the peroxymonosulfate activation processes with the generation of extra reactive species. The Fe3+/Fe2+ and Cu2+/Cu+ redox cycles are conducive to the continuous generation of active species. The results of the catalyst recycling test, metal ion leaching test and mineralization test suggested that the fabricated catalyst had excellent catalytic stability, sustainability and mineralization ability. In addition, twenty-one intermediates were detected using liquid chromatography-mass spectrometry, and three possible degradation pathways were further proposed. MWCNTs-CuFe2O4 makes up for the shortcomings of transition metals and single carbon materials in activating peroxymonosulfate to treat wastewater and have significant potential to improve the separation and catalytic capacity of the catalyst. This study provides new ideas for the design of high-performance multiphase catalysts for applications in catalytic oxidation and proposes new insights into the mechanistic investigation.

References

1. J. Y. Yang, M. Y. Huang, S. S. Wang, X. Y. Mao, Y. M. Hu and X.Chen, Water, 12, 3583 (2020).
2. Y. W. Zhong, K. Shih, Z. H. Diao, G. Song, M. H. Su, L. A. Hou,D. Y. Chen and L. J. Kong, Chem. Eng. J., 417, 129225 (2021).
3. J. Zhao, P. F. Xiao, S. Han, M. Zulhumar and D. D. Wu, Water Sci.Technol., 85, 645 (2022).
4. A. Czyrski, K. Anusiak and A. Teżyk, Sci. Rep., 9, 1 (2019).
5. X. J. Wen, C. G. Niu, H. Guo, L. Zhang, C. Liang and G. M. Zeng,J. Catal., 358, 211 (2018).
6. R. Anjali and S. Shanthakumar, J. Environ. Manage., 246, 51 (2019).
7. S. Han and P. F. Xiao, Sep. Purif. Technol., 287, 120533 (2022).
8. Q. R. Wang, Y. X. Shi, S. Y. Lv, Y. Liang and P. F. Xiao, RSC Adv.,11, 18525 (2021).
9. P. F. Xiao, L. An and D. D. Wu, New Carbon Mater., 35, 667 (2020).
10. L. An and P. F. Xiao, RSC Adv., 10, 19401 (2020).
11. R. B. Li, M. X. Cai, Z. J. Xie, Q. X. Zhang, Y. Q. Zeng, H. J. Liu and W. Y. Lv, Appl. Catal. B., 244, 974 (2019).
12. A. Lassoued, M. Ben Hassine, F. Karolak, B. Dkhil, S. Ammar and A. Gadri, J. Mater. Sci. Mater. Electron., 28, 18857 (2017).
13. K. Atacan, N. Güy and M. Özacar, J. Colloids Interface Sci. Commun., 40, 100359 (2021).
14. K. Atacan, J. Alloys Compd., 791, 391 (2019).
15. Z. Q. Yang, Y. Li, X. Y. Zhang, X. D. Cui, S. He, H. Liang and A. Ding, Chem. Eng. J., 384, 123319 (2020).
16. H. Pourzamani, E. Jafari, M. Rozveh, H. Mohammadi, M. Rostami and N. Mengelizadeh, Desalin. Water Treat., 167, 156 (2019).
17. K. Zhu, Q. Bin, Y. Q. Shen, J. Huang, D. D. He and W. J. Chen,Chem. Eng. J., 402, 126090 (2020).
18. B. M. Liu, W. B. Song, H. X. Wu, Z. Y. Liu, Y. J. Sun, Y. H. Xu and H. L. Zheng, Chem. Eng. J., 398, 125498 (2020).
19. L. K. Wu, H. Wu, H. B. Zhang, H. Z. Cao, G. Y. Hou, Y. P. Tang and G. Q. Zheng, Chem. Eng. J., 334, 1808 (2018).
20. P. Laokul, V. Amornkitbamrung, S. Seraphin and S. Maensiri, Curr.Appl. Phys., 11, 101 (2011).
21. Y. B. Wang, H. Y. Zhao, M. F. Li, J. Q. Fan and G. H. Zhao, Appl.Catal., B., 147, 534 (2014).
22. A. Dandia, A. K. Jain and S. Sharma, RSC Adv., 3, 2924 (2013).
23. A. Samadi, R. Ahmadi and S. M. Hosseini, Org. Electron., 75, 105405(2019).
24. E. M. Elsehly, N. G. Chechenin, A. V. Makunin, H. A. Motaweh,K. A. Bukunov and E. G. Leksina, J. Nanomater., 6, 2 (2016).
25. Z. Y. Lu, M. He, L. L. Yang, Z. F. Ma, L. Yang, D. D. Wang, Y. S.Yan, W. D. Shi, Y. Liu and Z. F. Hua, RSC Adv., 5, 47820 (2015).
26. G. H. Liu, C. Li, B. A. Stewart, L. Liu, M. Zhang, M. Y. Yang and K. F. Lin, Chem. Eng. J., 399, 125722 (2020).
27. S. Z. Wang and J. L. Wang, Chem. Eng. J., 356, 350 (2019).
28. J. Kang, X. J. Duan, L. Zhou, H. Q. Sun, M. O. Tade and S. B. Wang,Chem. Eng. J., 288, 399 (2016).
29. S. M. Li, B. Wang, J. H. Liu and M. Yu, Electrochim. Acta, 129, 33(2014).
30. P. X. Li, R. G. Ma, Y. Zhou, Y. F. Chen, Z. Z. Zhou, G. H. Liu, G. H.Peng and J. C. Wang, RSC Adv., 5, 44476 (2015).
31. N. Kumar, A. Kumar, G. M. Huang, W. W. Wu and T. Y. Yseng,Appl. Surf. Sci., 433, 1100 (2018).
32. H. Y. Gao, J. J. Xiang and Y. Cao, Appl. Surf. Sci., 413, 351 (2017).
33. A. Manikandan, M. Durka, S. A. Antony and J. Supercond, Nov.Magn., 28, 2047 (2015).
34. A. Manikandan, M. Durka and S. A. Antony, J. Supercond. Nov.Magn., 27, 2841 (2014).
35. Y. L. Zou, Z. Y. Li, Y. L. Liu, J. L. Duan and B. Long, J. Alloys Compd.,820, 153085 (2020).
36. W. L. Guo, Z. H. Zhang, H. Lin and L. Cai, Mol. Catal., 492, 111011(2020).
37. S. Madihi-Bidgoli, S. Asadnezhad, A. Yaghoot-Nezhad and A. Hassani, J. Environ. Chem. Eng., 9, 106660 (2021).
38. X. L. Li, H. J. Lu, Y. Zhang and F. He, Chem. Eng. J., 316, 893 (2017).
39. T. J. Al-Musawi, G. McKay, P. Rajiv, N. Mengelizadeh and D.Balarak, J. Photoch. Photobio., A 424, 113617 (2022).
40. B. Kakavandi, S. Alavi, F. Ghanbari and M. Ahmadi, Chemosphere,287, 132024 (2022).
41. M. Alhamd, T. Tabatabaie, I. Parseh, F. Amiri and N. Mengelizadeh, Environ. Sci. Pollut. Res., 28, 57099 (2021).
42. T. j. Al-Musawi, P. Rajiv, N. Mengelizadeh, F. S. Arghavan and D.Balarak, J. Mol. Liq., 337, 116470 (2021).
43. X. J. Wen, Q. Lu, X. X. Lv, J. Sun, J. Guo, Z. H. Fei and C. G. Niu, J.Hazard. Mater., 385, 121508 (2020).
44. M. M. Amini and N. Mengelizadeh, Environ. Sci. Pollut. Res., 27,45324 (2020).
45. X. L. Zeng, J. Chen, R. J. Qu, M. B. Feng and Z. Y. Wang, Chem.Eng. J., 319, 98 (2017).
46. M. J. Huang, S. S. Peng, W. Xiang, C. Wang, X. H. Wu, J. Mao and T. Zhou, Chem. Eng. J., 429, 132372 (2022).
47. C. H. Shen, Y. Chen, X. J. Xu, X. Y. Li, X. J. Wen, Z. T. Liu, R. Xing,H. Guo and Z. H. Fei, J. Hazard. Mater., 416, 126217 (2021).
48. Y. M. Qi, R. J. Qu, J. Q. Liu, J. Chen, G. Al-Basher, N. Alsultan,Z. Y. Wang and Z. L. Huo, Chemosphere, 237, 124484 (2019).
49. J. Y. Yao, Y. Yu, R. J. Qu, J. Chen, Z. L. Huo, F. Zhu and Z. Y. Wang,Environ. Sci. Technol., 54, 9052 (2020).
50. Y. Y. Wang, L. Yao, X. Liu, J. Cheng, W. Liu, T. Liu, M. M. Sun, L. J.Zhao, F. Ding, Z. W. Lu, P. Zou, X. X. Wang, Q. B. Zhao and H. B Rao, Biosens. Bioelectron., 142, 111483 (2019).
51. L. C. Yue, S. G. Zhang, H. Q. Zhao, F. Yu, M. Wang, L. L. An, X. D.Zhang and J. Mi, Solid State Ion., 329, 15 (2019).
52. X. F. Yu, G. Y. Chen, Y. Z. Wang, J. W. Liu, K. Pei, Y. H. Zhao, W. B.You, L. Wang, J. Zhang, L. S. Xing, J. J. Ding, G. Z. Ding, M. Wang
and R. C. Che, Nano Res., 13, 437 (2020).
53. Z. X. Wang, Y. F. Han, W. L. Fan, Y. X. Wang and L. H. Huang, Sep.Purif. Technol., 278, 119558 (2021).
54. B. M. Liu, W. B. Song, H. X. Wu, Z. Y. Liu, Y. Teng, Y. J. Sun, Y. H.Xu and H. L. Zheng, Chem. Eng. J., 398, 125498 (2020).
55. B. M. Liu, W. B. Song, W. W. Zhang, X. Zhang, S. L. Pan, H. X. Wu,Y. J. Sun and Y. H. Xu, Sep. Purif. Technol., 273, 118705 (2021).
56. R. Bai, W. F. Yan, Y. Xiao, S. Q. Wang, X. C. Tian, J. P. Li, X. F. Xiao,X. Q. Lu and F. Zhao, Chem. Eng. J., 397, 125501 (2020).
57. W. T. Tan, Y. Ruan, Z. H. Diao, G. Song, M. H. Su, L. A. Hou, D. Y.Chen, L.J. Kong and H.M. Deng, Chemosphere, 280, 130626 (2021).
58. X. L. Yang, X. Y. Xie, S. Q. Li, W. X. Zhang, X. D. Zhang, H. X.Chai and Y. M. Huang, J. Hazard. Mater., 419, 126360 (2021).
59. Y. W. Zhong, K. Shih, Z. H. Diao, G. Song, M. H. Su, L. A. Hou,D. Y. Chen and L. J. Kong, Chem. Eng. J., 417, 129225 (2021).
60. J. B. Zhou, W. Liu and W. Q. Cai, Sci. Total Environ., 696, 133962(2019).
61. J. Y. Liu, Z. L. Li, M. Wang, C. Y. Jin, J. Kang, Y. W. Tang and S. Y.Li, Sep. Purif. Technol., 274, 118666 (2021).
62. Q. Y. Zhang, X. Q. Sun, Y. Dang, J. J. Zhu, Y. Zhao, X. X. Xu and Y. Z. Zhou, J. Hazard. Mater., 424, 127651 (2022).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로