Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received September 8, 2022
Revised October 19, 2022
Accepted October 31, 2022
- Acknowledgements
- This work was supported by Industrial Strategic Technology Development Program (20012763, development of petroleum residue-based porous adsorbent for industrial wastewater treatment) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
High-efficiency oil/water separation of hydrophobic stainless steel Mesh filter through carbon and fluorine surface treatment
Abstract
With the rapid industrial development, the discharge of oily wastewater has increased and polluted the
environment. The conventional oil/water separation method has problems, such as generating harmful by-products,
high operating costs, and low efficiency. For this reason, research on the development of ideal oil/water separation
materials is being actively conducted. In this work, a hydrophobic mesh filter with excellent separation efficiency and
separation speed was prepared through the surface coating of stainless steel Mesh (SUS Mesh), which has a large aperture size. After carbon coating on the surface of the SUS Mesh using the physical vapor deposition method, hydrophobicity was improved by giving fluorine functional groups to the surface using fluorine plasma. The manufactured mesh
filter separated the oil at a high flux (6,062 Lm2
h1
) in a horizontal condition without external force, and at a high
speed of fewer than two minutes, with a separation efficiency is 99.88%. Very high separation efficiency was observed.
In addition, the average efficiency of 99.77% was maintained even in continuous oil/water separation. The hydrophobic mesh filter fabricated by a simple process in this study can be evaluated as a promising oil/water separation material that can be actually applied to separate oil from oily wastewat
References
2. W. Kang, M. Li, H. Yang, X. Kang, F. Wang, H. Jiang, M. Zhang, T.Zhu and B. Sarsenbekuly, J. Ind. Eng. Chem., 93, 415 (2021).
3. I. B. Ivshina, M. S. Kuyukina, A. V. Krivoruchko, A. A. Elkin, S. O.Makarov, C. J. Cunningham, T. A. Peshkur, R. M. Atlas and J. C.Philp, Environ. Sci.: Process. Impacts, 17, 120 (2015).
4. V. Broje and A. A. Keller, Environ. Sci. Technol., 40, 791 (2006).
5. N. Syed, J. Huang and Y. Feng, Carbon Lett., 32, 81 (2022).
6. S. Basak, J. Nanda and A. Banerjee, J. Mater. Chem., 22, 11658 (2012).
7. S. Chen, W. Li, F. Li, T. Li and W. Cao, J. Ind. Eng. Chem., 80, 33(2019).
8. C.-J. Wang, W.-F. Kuan, H.-P. Lin, Y.A. Shchipunov and L.-J. Chen,J. Ind. Eng. Chem., 96, 144 (2021).
9. Q. Wang, Z. Yu, X. Zhu, Q. Xiang, H. Chen and Y. Pang, J. Ind.Eng. Chem., 115, 314 (2022).
10. Y. O. Raji, M. H. D. Othman, N. A. H. S. Nordin, M. R. Adam, Z. S.Tai, J. Usman and A.F. Ismail, Korean J. Chem. Eng., 37, 1631 (2020).
11. S. Jo and Y. Kim, Korean J. Chem. Eng., 33, 3203 (2016).
12. Z. Li, T. Shi, T. Zhang, Q. Guo, F. Qiu, X. Yue and D. Yang, Korean J. Chem. Eng., 36, 92 (2019).
13. K. Y. Eum, I. Phiri, J. W. Kim, W. S. Choi, J. M. Ko and H. Jung,Korean J. Chem. Eng., 36, 1313 (2019).
14. Z. Li and Z. Guo, Mater. Des., 196, 109144 (2020).
15. F. R. Sultanov, C. Daulbayev, B. Bakbolat, Z. A. Mansurov, A. A.Urazgaliyeva, R. Ebrahim, S. S. Pei and K.-P. Huang, Carbon Lett.,
30, 81 (2020).
16. Y. Jiang, S. Wan, W. Zhao, W. Yu, S. Wang, Z. Yu, Q. Yang, W. Zhou and X. Liu, Carbon Lett., 32, 1047 (2022).
17. Z. Chu, Y. Feng and S. Seeger, Angew. Chem. Int. Ed., 54, 2328(2015).
18. Z. Xue, Y. Cao, N. Liu, L. Feng and L. Jiang, J. Mater. Chem. A, 2,2445 (2014).
19. B. Wang, W. Liang, Z. Guo and W. Liu, Chem. Soc. Rev., 44, 336(2015).
20. M. Zhu, Y. Liu, M. Chen, Z. Xu, L. Li and Y. Zhou, J. Pet. Sci. Eng.,205, 108889 (2021).
21. J. Wang, Y. K. Park and Y. M. Jo, J. Ind. Eng. Chem., 89, 400 (2020).
22. A. S. Singh, S. Jindani, B. Ganguly and A. V. Biradar, J. Ind. Eng.Chem., 112, 218 (2022).
23. Y. Liu, L. Wang, H. Lu and Z. Huang, ACS Appl. Polym. Mater., 2,4770 (2020).
24. J.-H. Kim, S. Lee and Y.-S. Lee, J. Ind. Eng. Chem., 27, 307 (2015).
25. S. Sriram, R. K. Singh and A. Kumar, Mater. Today: Proc., 26, 2495(2020).
26. S. Gbewonyo, S. Xiu, A. Shahbazi and L. Zhang, Carbon Lett., 30,289 (2020).
27. D. Kim, K. H. Kim, C. Lim and Y.-S. Lee, Carbon Lett., 32, 321(2022).
28. A. A. Voznesenskaya, A. V. Zhdanov and L. V. Belyaev, Mater. Today:Proc., 19, 2270 (2019).
29. K. H. Kim, J. H. Cho, J. U. Hwang, J. S. Im and Y.-S. Lee, J. Ind.Eng. Chem., 99, 48 (2021).
30. S. Ha, C. Lim and Y.-S. Lee, J. Ind. Eng. Chem., 111, 1 (2022).
31. S. Kim, C. Lim, D. Kim and Y.-S. Lee, Appl. Chem. Eng., 32, 653(2021).
32. D. Kim, R. Mauchauffé, J. Kim and S.Y. Moon, Sci. Rep., 11, 1 (2021).
33. S. Kirk, M. Strobel, C.-Y. Lee, S.J. Pachuta, M. Prokosch, H. Lechuga,
M. E. Jones, C. S. Lyons, S. Degner and Y. Yang, Plasma Process.Polym., 7, 107 (2010).
34. Y. Yang, M. Strobel, S. Kirk and M. J. Kushner, Plasma Process.Polym., 7, 123 (2010).
35. D. An, K. H. Kim, J. G. Kim and Y.-S. Lee, Appl. Chem. Eng., 30,297 (2019).
36. J.-C. E. Yang, M.-P. Zhu, D. D. Dionysiou, B. Yuan and M.-L. Fu,Chem. Eng. J., 430, 133102 (2022).
37. Y. Kim, Y. Lee, S. Han and K.-J. Kim, Surf. Coat. Technol., 200,4763 (2006).
38. M. E. H. M. da Costa, F. L. Freire, L. G. Jacobsohn, D. Franceschini,G. Mariotto and I.R.J. Baumvol, Diam. Relat. Mater., 10, 910 (2001).
39. S. M. Mukhopadhyay, P. Joshi, S. Datta, J. G. Zhao and P. France, J.Phys. D: Appl. Phys., 35, 1927 (2002).
40. C. Lim, Y. Ko, C. H. Kwak, S. Kim and Y.-S. Lee, Carbon Lett., 32,1329 (2022).
41. D. An, K. H. Kim, C. Lim and Y.-S. Lee, Carbon Lett., 31, 1357(2021).
42. T. Fan, Y. Su, Q. Fan, Z. Li, W. Cui, M. Yu, X. Ning, S. Ramakrishna and Y. Long, ACS Appl. Mater. Interfaces, 13, 19377 (2021).
43. S. Fan, Z. Wang, P. Liang, H. Li, Y. Zhang, W. Fan and G. Xu, J.Mater. Res. Technol., 19, 2238 (2022).
44. A. Xie, J. Cui, J. Yang, Y. Chen, J. Dai, J. Lang, C. Li and Y. Yan, J.Mater. Chem. A, 7, 8491 (2019).
45. M. Tao, L. Xue, F. Liu and L. Jiang, Adv. Mater., 26, 2943 (2014).