Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received November 3, 2022
Revised January 5, 2023
Accepted January 31, 2023
- Acknowledgements
- This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Government of Korea (MSIT) (Grant Number: 2021R1A2C1003186).
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Effect of air stone pore size and gas flow rate on the recovery efficiency of paclitaxel from biomass in gas bubble-assisted extraction
Abstract
The effect of air stone pore size and gas flow rate on the extraction efficiency of gas bubble-assisted
extraction to recover paclitaxel derived from Taxus chinensis was investigated. The yield of paclitaxel at air stone pore
sizes of 10, 30, and 43 m was 68, 82, and 83% at a gas flow rate of 1.0 L/min, 81, 82, and 85% at a gas flow rate of
1.5 L/min, and 83, 83, and 85% at a gas flow rate of 2.0 L/min, respectively. As the air stone pore size and gas flow rate
increased, the yield increased and was significantly improved compared to the 59% yield in the conventional extraction.
In addition, as the air stone pore size and gas flow rate increased, the extraction rate constants increased to 1.2302-
3.6740 mL/mg·min (10-43 m, 1.0 L/min), 3.2212-3.9247 mL/mg·min (10-43 m, 1.5 L/min), and 3.7219-3.9678 mL/
mg·min (10-43 m, 2.0 L/min). The effective diffusion coefficients increased to 3.33928×10114.16299×1011 m2
/s
(10-43 m, 1.0 L/min), 3.93771×10114.71392×1011 m2
/s (10-43 m, 1.5 L/min), and 4.68557×10114.84878×1011
m2
/s (10-43 m, 2.0 L/min). While the mass transfer coefficients increased to 3.05840×105
3.71015×105 m/s (10-
43 m, 1.0 L/min), 3.53749×105
4.13443×105 m/s (10-43 m, 1.5 L/min), and 4.11263×105
4.23815×105 m/s (10-
43 m, 2.0 L/min). A morphological analysis by SEM showed that the bubbles themselves affected cell disruption, and
as the air stone pore size and gas flow rate increased, cell disruption accelerated and the recovery efficiency of paclitaxel improved.
Keywords
References
2. H. S. Min, H. G. Kim and J. H. Kim, Korean J. Chem. Eng., 39, 398(2022).
3. Y. S. Jang and J. H. Kim, Biotechnol. Bioprocess Eng., 24, 529 (2019).
4. J. H. Kim, Korean J. Biotechnol. Bioeng., 21, 1 (2006).
5. H. S. Min and J. H. Kim, Biotechnol. Bioprocess Eng., 27, 111 (2022).
6. M. Ghorbani, F. Pourjafar, M. Saffari and Y. Asgari, Meta Gene, 26,100800 (2020).
7. H. S. Min, M.S. Thesis, Kongju National University, Cheonan, Korea(2022).
8. C. G. Lee and J. H. Kim, Process Biochem., 51, 1738 (2016).
9. S. H. Pyo, H. B. Park, B. K. Song, B. H. Han and J. H. Kim, Process Biochem., 39, 316 (2004).
10. J. H. Kim, Korean Chem. Eng. Res., 58, 273 (2020).
11. J. H. Kim and S. S. Hong, Korean J. Biotechnol. Bioeng., 15, 346(2000).
12. K. W. Yoo and J. H. Kim, Biotechnol. Bioprocess Eng., 23, 532 (2018).
13. S. H. Lee and J. H. Kim, Process Biochem., 76, 187 (2019).
14. W. Tang, B. Wang, M. Wang and M. Wang, J. Appl. Res. Med. Aromat. Plants, 25, 100331 (2021).
15. R. Upadhyay, G. Nachiappan and H. N. Mishra, Food Sci. Biotechnol., 24, 1951 (2015).
16. G. Wang, Q. Cui, L. J. Yin, Y. Li, M. Z. Gao, Y. Meng, J. Li and S. D.Zhang, Sep. Purif. Technol., 244, 115805 (2020).
17. T. Wang, N. Guo, S. X. Wang, P. Kou, C. J. Zhao and Y. J. Fu, Food Bioprod. Process, 108, 69 (2018).
18. G. S. Ha and J. H. Kim, Process Biochem., 51, 1664 (2016).
19. H. G. Kim and J. H. Kim, Biotechnol. Bioprocess Eng., 27, 668 (2022).
20. D. Panda and S. Manickam, Appl. Sci., 9, 766 (2019).
21. H. J. Kang and J. H. Kim, Process Biochem., 99, 316 (2020).
22. K. Wohlgemuth, A. Kordylla, F. Ruether and G. Schembecker, Chem.Eng. Sci., 64, 4155 (2009).
23. Y. Chisti, Trends Biotechnol., 18, 420 (2000).
24. Y. T. Wu and A. Adnan, Sci. Rep., 7, 5323 (2017).
25. S. Chen, M. B. Timmons, D. J. Aneshansley and J. J. Bisogni Jr.,Aquacult. Eng., 11, 267 (1992).
26. Y. S. Ho, H. A. Harouna-Oumarou, H. Fauduet and C. Porte, Sep.Purif. Technol., 45, 169 (2005).
27. M. G. Shashidhar, P. Giridhar and B. Manohar, Biochem. Eng. J.,121, 88 (2017).
28. A. Pholosi, E. B. Naidoo and A. E. Ofomaja, S. Afr. J. Chem. Eng.,32, 39 (2020).
29. R. Y. Krishnan and K. S. Rajan, Sep. Purif. Technol., 157, 169 (2016).
30. R. Y. Krishnan, M. N. Chandran, V. Vadivel and K. S. Rajan, Sep.Purif. Technol., 170, 224 (2016).
31. L. Rakotondramasy-Rabesiaka, J. L. Havet, C. Porte and H. Fauduet,Sep. Purif. Technol., 76, 126 (2010).
32. P. C. Setford, D. W. Jeffery, P. R. Grbin and R. A. Muhlack, Molecules, 24, 73 (2019)