ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received November 3, 2022
Revised January 5, 2023
Accepted January 31, 2023
Acknowledgements
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Government of Korea (MSIT) (Grant Number: 2021R1A2C1003186).
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Effect of air stone pore size and gas flow rate on the recovery efficiency of paclitaxel from biomass in gas bubble-assisted extraction

Center for Future Sustainable Technology, Department of Chemical Engineering, Kongju National University, Cheonan 31080, Korea
jinhyun@kongju.ac.kr
Korean Journal of Chemical Engineering, June 2023, 40(6), 1425-1432(8), 10.1007/s11814-023-1425-z
downloadDownload PDF

Abstract

The effect of air stone pore size and gas flow rate on the extraction efficiency of gas bubble-assisted extraction to recover paclitaxel derived from Taxus chinensis was investigated. The yield of paclitaxel at air stone pore sizes of 10, 30, and 43 m was 68, 82, and 83% at a gas flow rate of 1.0 L/min, 81, 82, and 85% at a gas flow rate of 1.5 L/min, and 83, 83, and 85% at a gas flow rate of 2.0 L/min, respectively. As the air stone pore size and gas flow rate increased, the yield increased and was significantly improved compared to the 59% yield in the conventional extraction. In addition, as the air stone pore size and gas flow rate increased, the extraction rate constants increased to 1.2302- 3.6740 mL/mg·min (10-43 m, 1.0 L/min), 3.2212-3.9247 mL/mg·min (10-43 m, 1.5 L/min), and 3.7219-3.9678 mL/ mg·min (10-43 m, 2.0 L/min). The effective diffusion coefficients increased to 3.33928×10114.16299×1011 m2 /s (10-43 m, 1.0 L/min), 3.93771×10114.71392×1011 m2 /s (10-43 m, 1.5 L/min), and 4.68557×10114.84878×1011 m2 /s (10-43 m, 2.0 L/min). While the mass transfer coefficients increased to 3.05840×105 3.71015×105 m/s (10- 43 m, 1.0 L/min), 3.53749×105 4.13443×105 m/s (10-43 m, 1.5 L/min), and 4.11263×105 4.23815×105 m/s (10- 43 m, 2.0 L/min). A morphological analysis by SEM showed that the bubbles themselves affected cell disruption, and as the air stone pore size and gas flow rate increased, cell disruption accelerated and the recovery efficiency of paclitaxel improved.

References

1. L. Zhu and L. Chen, Cell. Mol. Biol. Lett., 24, 40 (2019).
2. H. S. Min, H. G. Kim and J. H. Kim, Korean J. Chem. Eng., 39, 398(2022).
3. Y. S. Jang and J. H. Kim, Biotechnol. Bioprocess Eng., 24, 529 (2019).
4. J. H. Kim, Korean J. Biotechnol. Bioeng., 21, 1 (2006).
5. H. S. Min and J. H. Kim, Biotechnol. Bioprocess Eng., 27, 111 (2022).
6. M. Ghorbani, F. Pourjafar, M. Saffari and Y. Asgari, Meta Gene, 26,100800 (2020).
7. H. S. Min, M.S. Thesis, Kongju National University, Cheonan, Korea(2022).
8. C. G. Lee and J. H. Kim, Process Biochem., 51, 1738 (2016).
9. S. H. Pyo, H. B. Park, B. K. Song, B. H. Han and J. H. Kim, Process Biochem., 39, 316 (2004).
10. J. H. Kim, Korean Chem. Eng. Res., 58, 273 (2020).
11. J. H. Kim and S. S. Hong, Korean J. Biotechnol. Bioeng., 15, 346(2000).
12. K. W. Yoo and J. H. Kim, Biotechnol. Bioprocess Eng., 23, 532 (2018).
13. S. H. Lee and J. H. Kim, Process Biochem., 76, 187 (2019).
14. W. Tang, B. Wang, M. Wang and M. Wang, J. Appl. Res. Med. Aromat. Plants, 25, 100331 (2021).
15. R. Upadhyay, G. Nachiappan and H. N. Mishra, Food Sci. Biotechnol., 24, 1951 (2015).
16. G. Wang, Q. Cui, L. J. Yin, Y. Li, M. Z. Gao, Y. Meng, J. Li and S. D.Zhang, Sep. Purif. Technol., 244, 115805 (2020).
17. T. Wang, N. Guo, S. X. Wang, P. Kou, C. J. Zhao and Y. J. Fu, Food Bioprod. Process, 108, 69 (2018).
18. G. S. Ha and J. H. Kim, Process Biochem., 51, 1664 (2016).
19. H. G. Kim and J. H. Kim, Biotechnol. Bioprocess Eng., 27, 668 (2022).
20. D. Panda and S. Manickam, Appl. Sci., 9, 766 (2019).
21. H. J. Kang and J. H. Kim, Process Biochem., 99, 316 (2020).
22. K. Wohlgemuth, A. Kordylla, F. Ruether and G. Schembecker, Chem.Eng. Sci., 64, 4155 (2009).
23. Y. Chisti, Trends Biotechnol., 18, 420 (2000).
24. Y. T. Wu and A. Adnan, Sci. Rep., 7, 5323 (2017).
25. S. Chen, M. B. Timmons, D. J. Aneshansley and J. J. Bisogni Jr.,Aquacult. Eng., 11, 267 (1992).
26. Y. S. Ho, H. A. Harouna-Oumarou, H. Fauduet and C. Porte, Sep.Purif. Technol., 45, 169 (2005).
27. M. G. Shashidhar, P. Giridhar and B. Manohar, Biochem. Eng. J.,121, 88 (2017).
28. A. Pholosi, E. B. Naidoo and A. E. Ofomaja, S. Afr. J. Chem. Eng.,32, 39 (2020).
29. R. Y. Krishnan and K. S. Rajan, Sep. Purif. Technol., 157, 169 (2016).
30. R. Y. Krishnan, M. N. Chandran, V. Vadivel and K. S. Rajan, Sep.Purif. Technol., 170, 224 (2016).
31. L. Rakotondramasy-Rabesiaka, J. L. Havet, C. Porte and H. Fauduet,Sep. Purif. Technol., 76, 126 (2010).
32. P. C. Setford, D. W. Jeffery, P. R. Grbin and R. A. Muhlack, Molecules, 24, 73 (2019)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로