Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received June 18, 2022
Revised December 3, 2022
Accepted January 31, 2023
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Adsorption kinetics, equilibrium, and thermodynamic studies to understand adsorption behavior of Evans blue dye by durian husk
Abstract
Membrane isolation, ion exchange, precipitation, transformation, and biosorption are all viable methods for
pollutant removal. Adsorption is a common commercial method to concentrate precious molecules or eliminate contaminants, and it is a cost-effective method of treating industrial wastewater. A novel method for increasing their
removal effectiveness has been developed for this purpose, using a low-cost biosorbent made from durian husk and
Evans blue (EB) dye as a subject. The EB dye adsorption percentage was determined to be 95.95% with 72.0 mg/g
adsorption amount at optimal conditions of pH 2 and 40 o
C. The second-order kinetic model fit the experimental data
the best. Additionally, the results indicated that the Sips isotherm model fits the experimental data better and that the
experiment involved single-layer adsorption on the adsorbent surface. A non-linear regression of the van’t Hoff plot
gave negative values of Gibbs free energy (39.38 to 41.48 kJ/mol) at all the temperatures studied (from 20 to 60 o
C),
indicating that the adsorption process is spontaneous and feasible. A negative value for the enthalpy (Ho
=23.37 kJ/
mol) indicated that the adsorption was exothermic, and the positive value of (So
=54.55 kJ/mol·K) concludes the
nature of adsorption of Evans blue dye by Durian husk likely to follow a physisorption adsorption mechanism
References
2. L. A. Adnan, A. R. Mohd Yusoff, T. Hadibarata and A. B. Khudhair,Water Air Soil Pollut., 225 (2014).
3. L. D. T. Prola, E. Acayanka, E. C. Lima, C. Bestetti, W. O. Santos, F.A.Pavan, S. L. P. Dias and C. R. T. Tarley, Desalination WaterTreat.,51, 4582 (2013).
4. I. K. Chandra, Y.-H. Ju, A. Ayucitra and S. Ismadji, Int. J. Environ.Sci. Technol., 10, 359 (2013).
5. F. B. D. Saiah, B.-L. Su and N. Bettahar, Macromol. Symp., 273, 125(2008).
6.E. Yilmaz, S. Memon and M. Yilmaz, J. Hazard. Mater., 174, 592(2010).
7.N. A. Husin, S. Rahman, R. Karunakaran and S. J. Bhore, Bioinformation, 14, 265 (2018).
8. S. M. Anisuzzaman, C. G. Joseph, D. Krishnaiah, A. Bono and L.C. Ooi, Water Sci. Technol., 72, 896 (2015).
9. Y. Gopalakrishnan, A. Al-Gheethi, M. Abdul Malek, M. Marisa Azlan, M. Al-Sahari, R. M. S. Radin Mohamed, S. Alkhadher and E. Noman, Sustainability, 12, 8928 (2020).
10. M. K. Dahri, L. B. L. Lim, N. Priyantha and C. M. Chan, Int. Food Res. J., 23, 1154 (2016).
11. S.-T. Ong, S.-Y. Tan, E.-C. Khoo, S.-L. Lee and S.-T. Ha, Desalination Water Treat., 45, 161 (2012).
12. Z. M. Lazim, T. Hadibarata, M. H. Puteh and Z. Yusop, Water Air Soil Pollut., 226 (2015).
13. Z. M. Lazim, T. Hadibarata, M. H. Puteh, Z. Yusop, R. Wirasnita and N. Mohd Nor, Jurnal Teknologi, 74, 109 (2015).
14. A. M. Malaowalla and C. Fong, Oral Surgery, Oral Medicine, Oral Pathol., 15, 1259 (1962).
15. M. Giger, H. R. Baumgartner and G. Zbinden, Agents Actions, 4,173 (1974).
16. M. Israel, M. Tomasi, S. Bostel and F.-M. Meunier, J. Neurochem.,78, 658 (2001).
17. E. Zablocka-Godlewska, W. Przystas and E. Grabinska-Sota, Water Air Soil Pollut., 223, 5259 (2012).
18.V. O. Njoku, K. Y. Foo, M. Asif and B. H. Hameed, Chem. Eng. J.,250, 198 (2014).
19.S.-L. Chan, Y. P. Tan, A. H. Abdullah and S.-T. Ong, J. Taiwan Inst.Chem. Eng., 61, 306 (2016).
20. M. Ngabura, S. A. Hussain, W. A. W. Ghani, M. S. Jami and Y. P. Tan,J. Chem. Technol. Biotechnol., 94, 1384 (2019).
21. S. Lagergren, Kungliga Svenska Vetenskapsakademiens Handlingar,24, 1 (1898).
22. Y. S. Ho and G. McKay, Process Biochem., 34, 451 (1999).
23. H Yuh-Shan, Scientometrics, 59, 171 (2004).
24. Y. S. Ho and G. McKay, Process Biochem., 34, 451 (1999).
25. G. Blanchard, M. Maunaye and G. Martin, Water Res., 18, 1501(1984).
26. F. W. Cope, Bull. Math. Biophys., 34, 419 (1972).
27.H. N. Tran, S.-J. You and H.-P. Chao, J. Environ. Chem. Eng., 4, 2671(2016).
28.H. J. Motulsky and L. A. Ransnas. The FASEB J., 1, 365 (1987).
29. Y. Gopalakrishnan, A. Al-Gheethi, M. Abdul Malek, M. Marisa Azlan, M. Al-Sahari, R. M. S. Radin Mohamed, S. Alkhadher and E. Noman, Sustainability, 12, 8928 (2020).
30. B. H. Hameed and H. Hakimi, Biochem. Eng. J., 39, 338 (2008).
31. C. M. Payus, M. A. Refdin, N. Z. Zahari, A. B. Rimba, M. Geetha,C. Saroj, A. Gasparatos, K. Fukushi and P. Alvin Oliver, Mater.Today, 42, 80 (2021).
32. S. J. S. Flora and V. Pachauri, Int. J. Environ. Res. Public Health, 7,2745 (2010).
33. N. F. Cardoso, E. C. Lima, I. S. Pinto, C. V. Amavisca, B. Royer, R.B.Pinto, W. S. Alencar and S. F. P. Pereira, J. Environ. Manage., 92,1237 (2011).
34. M. A. Ahmad, N. Ahmad and O. S. Bello, Water Air Soil Pollut., 225(2014).
35. A. Witek-Krowiak, K. Chojnacka, D. Podstawczyk, A. Dawiec and K. Pokomeda, Bioresour. Technol., 160, 150 (2014).
36. K. Y. Foo and B. H. Hameed, Chem. Eng. J., 187, 53 (2012).
37. Q. Hu, S. Pang and D. Wang, Sep. Purif. Rev., 1 (2021).
38. K. Y. Foo and B. H. Hameed, Chem. Eng. J., 156, 2 (2010).
39. Z.L. Yaneva and N.V. Georgieva, Int. Rev. Chem. Eng., 4, 127 (2012).
40. Y. Mihara, T. Inoue and K. Yokota, Yakugaku Zasshi, 125, 225 (2005).
41. B. H. Hameed and M. I. El-Khaiary, J. Hazard. Mater., 154, 639 (2008).
42. I. Langmuir, J. Am. Chem. Soc., 38, 2221 (1916).
43. K. Y. Foo and B. H. Hameed, Chem. Eng. J., 156, 2 (2010).
44. T. W. Weber and R. K. Chakravorti, AIChE J., 20, 228 (1974).
45. K. S. Walton and R. Q. Snurr, J. Am. Chem. Soc., 129, 8552 (2007).
46. H. Freundlich, Zeitschrift Fur Physikalische Chemie, 57, 385 (1906).
47. N. Sivarajasekar and R. Baskar, Desalination Water Treat., 52, 7743
(2014).
48. D. S. Jovanović, Kolloid-Zeitschrift & Zeitschrift Fur Polymere,235, 1203 (1969).
49. O. Redlich and D. L. Peterson, J. Phys. Chem., 63, 1024 (1959).
50. N. Ayawei, A. N. Ebelegi and D. Wankasi, J. Chem., 2017, e3039817(2017).
51. Y. C. Wong, Y. S. Szeto, A. Cheung and G. Mckay, Process Biochem.,39, 695 (2004).
52. J. Toth, Acta Chimica (Academiae Scientiarum) Hungaricae, 69, 311(1971).
53. M. S. Podder and C. B. Majumder, Water Conserv. Sci. Eng, 1, 21(2016).
54. D. Do, Adsorption Analysis: Equilibria and Kinetics, Imperial College Press, London (1998).
55. Z. Saadi, R. Saadi and R. Fazaeli, J. Nanostruct. Chem., 3, 48 (2013).
56. A. B. Perez-Marin, V. M. Zapata, J. F. Ortuno, M. Aguilar, J. Saez and M. Llorens, J. Hazard. Mater., 139, 122 (2007).
57. Y. Torkia and M. Khalfaoui, IOSR J. Appl. Phys., 6, 62 (2014).
58. T. C. Chandra, M. M. Mirna, Y. Sudaryanto and S. Ismadji, Chem.Eng. J., 127, 121 (2007).
59. K. Nuithitikul, S. Srikhun and S. Hirunpraditkoon, J. Taiwan Inst.Chem. Eng., 41, 591 (2010).
60. D. Sharmmah, AIJR Abstracts (2021).
61. A.-A. Pelaez-Cid, A.-M. Herrera-Gonzalez, M. Salazar-Villanueva and A. Bautista-Hernandez, J. Environ. Manage., 181, 269 (2016).
62. Z. Belala, M. Jeguirim, M. Belhachemi, F. Addoun and G. Trouve,Environ. Chem. Lett., 9, 65 (2011).
63. K.-W. Jung, B. H. Choi, M.-J. Hwang, T.-U. Jeong and K.-H. Ahn,Bioresour. Technol., 219, 185 (2016).
64. H. Grabi, F. Derridj, W. Lemlikchi and E. Guenin, Sci. Rep., 11,9705 (2021).
65. E. C. Lima, A. Hosseini-Bandegharaei, J. C. Moreno-Pirajan and I.Anastopoulos, J. Mol. Liq., 273, 425 (2019).
66. X. Zhou and X. Zhou, Chem. Eng. Comm., 201, 1459 (2014).
67. F. Kefif, K. Ezziane, A. Bahmani, N. Bettahar and S. Mayouf, Bull.Mater. Sci., 42, 14 (2019).