ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 22, 2022
Revised December 8, 2022
Accepted December 29, 2022
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

A new ternary mixed-matrix membrane (PEBAX/PEG/MgO) to enhance CO2/CH4 and CO2/N2 separation efficiency

1Department of Chemical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran 2Department of Chemical Engineering, Pennsylvania State University, University Park, PA16802, USA 3Nanotechnology Research Institute, School of Chemical Engineering, Babol (Noshirvani) University of Technology, Babol, Ira
Korean Journal of Chemical Engineering, June 2023, 40(6), 1457-1473(17), 10.1007/s11814-023-1391-5
downloadDownload PDF

Abstract

Mixed-matrix membranes (MMMs) composed of suitable CO2-philic polymers and fillers can be attractive candidates for CO2/CH4 and CO2/N2 separation due to their high CO2 permeability, good thermochemical stability, low fabrication cost, and fast production process. In this research, a novel ternary MMM was fabricated via the blending of poly (amide 12-b-ethylene oxide) (PEBAX-1074) with polyethylene glycol (PEG-200) and magnesium oxide (MgO) nanoparticles mixture. The effects of various loadings of the fillers on CO2, N2, and CH4 permeability values through the membranes were studied. Permeation of CO2, N2, and CH4 gases through the resultant membranes at pressures of 2, 4, 6, 8, and 10 bar and temperatures of 25, 35, 45, and 55 o C revealed the superiority of the MMMs for CO2/CH4 and CO2/N2 separation in comparison with the pristine membranes. Particularly, at 25 o C and 2 bar, the CO2 permeability, as well as ideal CO2/CH4 and CO2/N2 selectivity of the optimized MMM containing 40 wt% of PEG-200 and 8 wt% of MgO nanoparticles, rose to 210.1 Barrer, 24.9 and 60.9, corresponding to enhancement of around 225%, 23% and 24% of the CO2 permeability and selectivity compared to the neat membrane, respectively. Thus, the fabricated MMM has a satisfying potential to separate CO2 from N2

References

1. J. Guan, T. Huang, W. Liu, F. Feng, S. Japip, J. Li, X. Wang and S.Zhang, Cell Rep. Phys. Sci., 3, 100864 (2022).
2. A. Brunetti, F. Scura, G. Barbieri and E. Drioli, J. Membr. Sci., 359,115 (2010).
3. D.D. Iarikov and S.T. Oyama, Review of CO2/CH4 separation membranes, Membrane Science and Technology, Elsevier, 914 (2011).
4. A. Husna, I. Hossain, I. Jeong and T.-H. Kim, Polymers, 14, 655(2022).
5. S. Meshkat, S. Kaliaguine and D. Rodrigue, Sep. Purif. Technol., 200,177 (2018).
6. N. Azizi, M. Isanejad, T. Mohammadi and R. M. Behbahani, Front.Chem. Sci. Eng., 13, 517 (2019).
7. C. Park, J. Yoon and E. L. Thomas, Polymer, 44, 6725 (2003).
8. A. Jonquières, R. Clément and P. Lochon, Prog. Polym. Sci., 27, 1803(2002).
9. Y. Chen, B. Wang, L. Zhao, P. Dutta and W. W. Ho, J. Membr. Sci.,495, 415 (2015).
10. L. Zhao, Y. Chen, B. Wang, C. Sun, S. Chakraborty, K. Ramasubramanian, P. K. Dutta and W. W. Ho, J. Membr. Sci., 498, 1 (2016).
11. E. Konyukhova, A. Buzin and Y. K. Godovsky, Thermochim. Acta,391, 271 (2002).
12. N. Azizi, M. Arzani, H. R. Mahdavi and T. Mohammadi, Korean J.Chem. Eng., 34, 2459 (2017).
13. Q. Zhang, M. Zhou, X. Liu and B. Zhang, J. Membr. Sci., 636,119612 (2021).
14. S. M. A. Ahmadi, T. Mohammadi and N. Azizi, J. Appl. Polym. Sci.,138, 50749 (2021).
15. L. Wang, Y. Li, S. Li, P. Ji and C. Jiang, J. Energy Chem., 23, 717(2014).
16. S. M. A. Ahmadi, T. Mohammadi and N. Azizi, Korean J. Chem.Eng., 38, 104 (2021).
17. S. Feng, J. Ren, D. Zhao, H. Li, K. Hua, X. Li and M. Deng, J. Appl.Polym. Sci., 136, 47620 (2019).
18. S. Feng, J. Ren, K. Hua, H. Li, X. Ren and M. Deng, Sep. Purif.Technol., 116, 25 (2013).
19. I. Salahshoori, I. Cacciotti, A. Seyfaee and A. Babapoor, J. Polym.Res., 28, 223 (2021).
20. J. Qiu, J.-M. Zheng and K.-V. Peinemann, Macromolecules, 40, 3213(2007).
21. A. Gonzalez, M. Iriarte, P. Iriondo and J. Iruin, Polymer, 43, 6205(2002).
22. N. Azizi, M. R. Hojjati and M. M. Zarei, Silicon, 10, 1461 (2018).
23. R. He, S. Cong, S. Xu, S. Han, H. Guo, Z. Liang, J. Wang and Y.Zhang, J. Membr. Sci., 624, 119081 (2021).
24. L.-E. José Cirilo Ignacio, L. Ant, S. Karl and B. Emilio, Open J.Polym. Chem., 2012, 63 (2012).
25. A. H. Ruhaimi, M. A. A. Aziz and A. A. Jalil, J. CO2 Util., 43, 101357(2021).
26. Y. Hu, Y. Guo, J. Sun, H. Li and W. Liu, J. Mater. Chem. A, 7, 20103(2019).
27. A. Atash Jameh, T. Mohammadi and O. Bakhtiari, Sep. Purif. Technol., 231, 115900 (2020).
28. J. Hou, X. Li, Y. Zhao, R. Guo and W. Tian, ACS Appl. Nano Mater.,5, 15310 (2022).
29. T. Khosravi and M. Omidkhah, J. Energy Chem., 26, 530 (2017).
30. M. H. Jazebizadeh and S. Khazraei, Silicon, 9, 775 (2017).
31. S. Wang, Y. Liu, S. Huang, H. Wu, Y. Li, Z. Tian and Z. Jiang, J.Membr. Sci., 460, 62 (2014).
32. A. Mahmoudi, M. Asghari and V. Zargar, J. Ind. Eng. Chem., 23,238 (2015).
33. M. Isanejad, N. Azizi and T. Mohammadi, J. Appl. Polym. Sci., 134,44531 (2017).
34. H. Hassanzadeh, R. Abedini and M. Ghorbani, Ind. Eng. Chem.Res., 61, 13669 (2022).
35. X. Lv, X. Li, L. Huang, S. Ding, Y. Lv and J. Zhang, Korean J. Chem.Eng., 39, 475 (2022).
36. N. Azizi, T. Mohammadi and R. M. Behbahani, J. Nat. Gas Sci.Eng., 37, 39 (2017).
37. N. Azizi, H. R. Mahdavi, M. Isanejad and T. Mohammadi, J. Polym.Res., 24, 141 (2017).
38. L. Yu, W. Xue, L. Cui, W. Xing, X. Cao and H. Li, Int. J. Biol. Macromol., 64, 233 (2014).
39. A. Ghadimi, T. Mohammadi and N. Kasiri, Ind. Eng. Chem. Res.,53, 17476 (2014).
40. H. R. Mahdavi, N. Azizi and T. Mohammadi, J. Polym. Res., 24,(2017).
41. A. Ghadimi, M. Amirilargani, T. Mohammadi, N. Kasiri and B.Sadatnia, J. Membr. Sci., 458, 14 (2014).
42. S. Hassanajili, M. Khademi and P. Keshavarz, J. Membr. Sci., 453,369 (2014).
43. M. Isanejad and T. Mohammadi, Mater. Chem. Phys., 205, 303(2018).
44. N. Azizi, T. Mohammadi and R. M. Behbahani, J. Energy Chem.,26, 454 (2017).
45. N. Azizi, T. Mohammadi and R. Mosayebi Behbahani, Chem. Eng.Res. Des., 117, 177 (2017).
46. A. F. Ismail, K. C. Khulbe and T. Matsuura, Gas Separation Membrane Materials and Structures, Gas Separation Membranes: Polymeric and Inorganic, Springer, Switzerland, 37 (2015).
47. V. Nafisi and M.-B. Hägg, J. Membr. Sci., 459, 244 (2014).
48. R. Surya Murali, A. F. Ismail, M. A. Rahman and S. Sridhar, Sep.Purif. Technol., 129, 1 (2014).
49. D. Zhao, J. Ren, H. Li, X. Li and M. Deng, J. Membr. Sci., 467, 41(2014).
50. D. Turnbull and M. H. Cohen, J. Chem. Phys., 52, 3038 (1970).
51. Y. Qiu, J. Ren, D. Zhao, H. Li and M. Deng, J. Energy Chem., 25,122 (2016).
52. J. H. Kim and Y. M. Lee, J. Membr. Sci., 193, 209 (2001).
53. M. C. Choi, J. Y. Jung, H. S. Yeom and Y. W. Chang, Polym. Eng.Sci., 53, 982 (2013).
54. D. Dixon and A. Boyd, Polym. Eng. Sci., 51, 2203 (2011).
55. Y. Wang, J. Ren and M. Deng, Sep. Purif. Technol., 77, 46 (2011).
56. R. Surya Murali, K. Praveen Kumar, A. F. Ismail and S. Sridhar,Micropor. Mesopor. Mater., 197, 291 (2014).
57. C. S. Lee, E. Song, J. T. Park and J. H. Kim, ACS Sustainable Chem.Eng., 9, 11903 (2021).
58. A. Car, C. Stropnik, W. Yave and K.-V. Peinemann, J. Membr. Sci.,307, 88 (2008).
59. H. Rabiee, S. Meshkat Alsadat, M. Soltanieh, S. A. Mousavi and A.Ghadimi, J. Ind. Eng. Chem., 27, 223 (2015).
60. M. Rezakazemi, A. Vatani and T. Mohammadi, RSC Adv., 5, 82460(2015).
61. Y. Yampolskii and B. Freeman, Membrane gas separation, Wiley Online Library (2010)
62. H. Sanaeepur, R. Ahmadi, A. E. Amooghin and D. Ghanbari, J.Membr. Sci., 573, 234 (2019).
63. S. T. Matteucci, Gas transport properties of reverse selective nanocomposite materials, The University of Texas at Austin, Ann Arbor (2007).
64. S. Matteucci, V. A. Kusuma, D. Sanders, S. Swinnea and B. D. Freeman, J. Membr. Sci., 307, 196 (2008).
65. A. Shariati, M. Omidkhah and M. Z. Pedram, Chem. Eng. Res. Des.,90, 563 (2012).
66. M. Sadeghi, M. Mehdi Talakesh, B. Ghalei and M. Shafiei, J. Membr.Sci., 427, 21 (2013).
67. M. M. Rahman, V. Filiz, S. Shishatskiy, C. Abetz, S. Neumann, S.Bolmer, M. M. Khan and V. Abetz, J. Membr. Sci., 437, 286 (2013).
68. H. Lin and B. D. Freeman, Macromolecules, 38, 8394 (2005).
69. L. M. Robeson, J. Membr. Sci., 320, 390 (2008).
70. L. M. Robeson, J. Membr. Sci., 62, 165 (1991).
71. F. Dorosti and A. Alizadehdakhel, Chem. Eng. Res. Des., 136, 119(2018)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로