ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received August 29, 2022
Revised January 13, 2023
Accepted January 31, 2023
Acknowledgements
This investigation was performed within the State Program of Fundamental Scientific Research (No 122040600071-9).
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Griseofulvin: Thermodynamic insight to solubility, solvation and partition processes

Department of Physical Chemistry of Drugs, G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences, Ivanovo, Russian Federation
omv@isc-ras.ru
Korean Journal of Chemical Engineering, June 2023, 40(6), 1474-1485(12), 10.1007/s11814-023-1429-8
downloadDownload PDF

Abstract

The solubility of griseofulvin in buffer solutions (pH 2.0 and 7.4), 1-octanol and hexane was measured in the temperature range 293.15-313.15 K by the shake flask method. It was found that griseofulvin is poorly soluble in aqueous buffer solutions (x8.63∙107 ), while the best solubility is observed in 1-octanol (x6.56∙104 ). The solubility evaluation in different solvents with the help of Hansen solubility parameters showed the consistency with the experimental data. The solubility was revealed to significantly depend on the dispersion interactions and polar bonds. The dissolution and solvation thermodynamic functions of the drug were calculated. The Gibbs energy and enthalpy of drug dissolution in aqueous and organic solvents are positive, which characterizes the dissolution process as hindered and endothermic. The van’t Hoff and Apelblat equations gave good correlations when used for modeling the experimental solubility results. Based on the data on the solubility and thermophysical parameters of the compound, the temperature dependences of the activity coefficients were determined and the excess thermodynamic functions of dissolution were calculated. Positive deviation from ideality was observed in all the solvent-solute systems studied. The partition coefficients of the drug in the 1-octanol/buffer pH 7.4 system were obtained and the transfer thermodynamic functions were derived. It was established that the drug distribution from the aqueous solution to the octanol phase was thermodynamically favorable and endothermic.

References

1. IARC monographs on the evaluation of carcinogenic risks to humans. IARC Working Group: Lyon (2001).
2. P. W. Brain, P. Curtis and H. Hemming, Trans. Br. Mycol. Soc., 32,153 (1949).
3. A. B. Petersen, N. S. Andersen, G. Konotop, N. H. M. Hanafiah,M. S. Raab, A. Kramer and M. H. Clausen, Eur. J. Med. Chem.,130, 240 (2017).
4. Y. S. Ho, J. S. Duh, J. H. Jeng, Y. J. Wang, Y. C. Liang, C. H. Lin, C. J.Tseng, C. F. Yu, R. J. Chen and J. K. Lin, Int. J. Cancer., 91, 393(2001).
5. S. H. Yalkowsky and R. M. Dannenfelser, Aquasol database of aqueous solubility, College of Pharmacy, Arizona (1992).
6. A. I. Arida, M. M. Al-Tabakha and H. A. J. Hamoury, Chem. Pharm.Bull., 55(12), 1713 (2007).
7. M. Lukac, I. Prokipcak, I. Lacko and F. Devinsky, Eur. J. Pharm.Sci., 44, 194 (2011).
8. J. Guo, P. A. Elzinga, M. J. Hageman and J. N. Herron, J. Pharm. Sci.,97, 1427 (2008).
9. A. K. Hamdy, M. M. Sheha, A. A. Abdel-Hafez and S. A. Shouman,Int. J. Med. Chem., 2017, 7386125 (2017).
10. C. Alvarez-Lorenzo, J. Gonzalez-Lopez, M. Fernandez-Tarrio and I. Sandez-Macho, Eur. J. Pharm. Biopharm., 66, 244 (2007).
11. G. Hu, H. Li, X. Wang and Y. Zhang, J. Chem. Eng. Data, 55, 3969(2010).
12. S. Zhao, Y. Ma, J. Gong, B. Hou and W. Tang, J. Mol. Liq., 296,111861 (2019).
13. U. Domanska, A. Pobudkowska, A. Pelczarska and Ł. Zukowski, J.Pharm., 403, 115 (2011).
14. S. Blokhina, A. Sharapova, M. Ol'khovich and G. Perlovich, J. Chem.Thermodyn., 132, 281 (2019).
15. J. H. Hildebrand and R. L. Scott, The solubility of nonelectrolites,Reinold Publ. Corp., New York (1950).
16. J. H. Hildebrand, J. M. Prausnitz and R. L. Scott, Regular and related solutions, Van Nostrand, New York (1970).
17. H. Gamsjäger, J. W. Lorimer, P. Scharlin, and D. G. Shaw, Pure Appl.Chem., 80, 233 (2008).
18. R. Kumar and J. M. Prausnitz, Solutions and solubilities, Wiley-Interscience, New York (1975).
19. C. M. Hansen, Solvent Theory and Practice, Advances in Chemistry. Amer. Chem. Soc., Washington (1973).
20. D. Van Krevelen and K. Nijenhuis, Properties of Polymers. Their
Correlation With Chemical Structure: Their Numerical Estimation and Prediction From Additive Groups Contributions, Elsevier, New York (1990).
21. M. A. Mohammad, A. Alhalaweh and S. P. Velaga, Int. J. Pharm.,407, 63 (2011).
22. E. B. Bagley, T. P. Nelson and J. M. Scigliano, J. Paint Technol., 43,35 (1971).
23. A. Apelblat and E. Manzurola, J. Chem. Thermodyn., 31, 85 (1999).
24. A. Apelblat and E. Manzurola, J. Chem. Thermodyn., 33, 147 (2001).
25. N. Sunsandee, S. Suren, N. Leepipatpiboon, M. Hronec and U.Pancharoen, Fluid Phase Equilibr., 338, 217 (2013).
26. B. Liu, B. Asadzadeh and W. Yan, J. Chem. Eng. Data, 64(12), 5218(2019).
27. M. A. Ruidiaz, D. R. Delgado, F. Martínez and Y. Marcus, Fluid Phase Equilibr., 299, 259 (2010).
28. G. Volgyi, E. Baka, K. J. Box, J. E. A. Comer and K. Takocs-Novok,Anal. Chim. Acta, 673, 40 (2010).
29. S. Jiang, Y. Qin, S. Wu, S. Xu, K. Li, P. Yang, K. Zhao, L. Lin and J.Gong, J. Chem. Eng. Data, 62, 259 (2016).
30. C. H. Gu, H. Li, R. B. Gandhi and K. Raghavan, Int. J. Pharm., 283,117 (2004).
31. P. H. Elworthy and F. J. Lipscom, J. Plrartn. Phartiiac., 20, 790 (1968).
32. D. J. Greenhalgh, A. C. Williams, P. Timmins and P. York, J. Pharm.Sci., 88(11), 1182 (1999).
33. J. Albers, Hot-melt extrusion with poorly soluble drugs, Cuvillier Ver-lag, Goettingen, Germany (2008).
34. A. Jouyban, W. E. Acree and F. Martínez, J. Mol. Liq., 313, 113579(2020).
35. G. Della Gatta, T. Usacheva, E. Badea, B. Pałecz and D. Ichim, J.Chem. Thermodyn., 38, 1054 (2006).
36. S. Blokhina, A. Sharapova, M. Ol'khovich and G. A. Perlovich, J.Therm. Anal. Calorim., 147, 1195 (2022).
37. F. Shakeel, M. Imran, N. Haq, S. Alshehri and M. K. Anwer, Molecules, 24, 3404 (2019).
38. J. E. Comer, High throughput measurement of logD and pKa, in:Artursson, P., Lennernas, H., van de Waterbeemd, H. (E.ds.),
Methods and Principles in Medicinal Chemistry, Wiley-VCH,Weinheim (2003).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로