ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received August 11, 2022
Revised November 26, 2022
Accepted December 5, 2022
Acknowledgements
Authors sincerely appreciate the King Khalid University for the research grant (KKU/RCAMS/22) under the Research Center for Advanced Materials Science (RCAMS) at King Khalid University, Saudi Arabia. Authors are also thankful to the Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur and Higher Education Commission (HEC) Islamabad, Pakistan.
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Zinc oxide-tungsten oxide (ZnO-WO3) composite for solar light-assisted degradation of organic dyes

1Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan 2Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, P.O. Box 9004, Saudi Arabia 3Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia 4School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan 5Department of Materials Science and Engineering, University of California, Lose Angles, United States of America
farooq.warsi@iub.edu.pk, mshakir@ucla.edu
Korean Journal of Chemical Engineering, June 2023, 40(6), 1497-1509(13), 10.1007/s11814-022-1368-9
downloadDownload PDF

Abstract

Photocatalytic degradation of dyes is one of the most effective methods that can be utilized for a pollutionfree environment. For this purpose, Tungsten oxide (WO3), zinc oxide (ZnO) and their composite WO3/ZnO were synthesized using facile route. X-rays diffraction (XRD), Fourier transform infra-red spectroscopy (FTIR) and scanning electron microscopy (SEM) confirmed their structural, spectral and morphological features, respectively. These techniques confirmed the formation of desired products. The as-prepared samples were utilized as photocatalysts for the evaluation of the photocatalytic removal of methylene blue and rhodamine B under solar light irradiation. The obtained results showed that the synergistic effect of tungsten oxide and zinc oxide is responsible for the increased charge separation and reduction in recombination chances of charge carriers that enhance the remarkable photocatalytic performance. For methylene blue and rhodamine-b, the percentage degradation was 94% and 85.7%, respectively. Different scavenger studies showed that holes are the major active species responsible for the removal of methylene blue. The EIS and Mott-Schottky plots confirmed the p-type and n-type character of WO3 and ZnO, respectively. Briefly, the as-synthesized nanocomposite showed enhanced photocatalytic behavior for the degradation of various dyes as compared to pristine metal oxides

References

1. M. A. Tofighy and T. Mohammadi, Desalination, 258, 182 (2010).
2. H. Daraei, A. Maleki, A. H. Mahvi, Y. Zandsalimi, L. Alaei and F.Gharibi, Desalination and Water Treatment, 52, 6745 (2014).
3. W.-Q. Lu, S.-H. Xie, W.-S. Zhou, S.-H. Zhang and A.-L. Liu, Open Environ. Sci. J., 2, 1 (2008).
4. D. Pimentel, B. Berger, D. Filiberto, M. Newton, B. Wolfe, E. Karabinakis, S. Clark, E. Poon, E. Abbett and S. Nandagopal, BioScience,
54, 909 (2004).
5. D. Chu, Y. Masuda, T. Ohji and K. Kato, Langmuir, 26, 2811 (2010).
6. Y. Changlin, Y. Kai, S. Qing, C. Y. Jimmy, C. Fangfang and L. Xin,Chin. J. Catal., 32, 555 (2011).
7. L. Mingce and C. Weimin, Chin. J. Catal., 29, 881 (2008).
8. C. Wang, X. Wang, B.-Q. Xu, J. Zhao, B. Mai, G. Sheng and J. Fu, J.Photochem. Photobiol. A: Chem., 168, 47 (2004).
9. M. A. Bhatti, K. F. Almaani, A. A. Shah, A. Tahira, A. D. Chandio,A. Q. Mugheri, A. liaquat Bhatti, B. Waryani, S. S. Medany and A.
Nafady, J. Cluster Sci., 33, 1445 (2022).
10. J. Xu, Y. Chang, Y. Zhang, S. Ma, Y. Qu and C. Xu, Appl. Surf. Sci.,255, 1996 (2008).
11. L.-C. Chen, Y.-J. Tu, Y.-S. Wang, R.-S. Kan and C.-M. Huang, J.Photochem. Photobiol. A: Chem., 199, 170 (2008).
12. K. Raja, P. Ramesh and D. Geetha, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 120, 19 (2014).
13. H. I. Nogueira, A. M. Cavaleiro, J. Rocha, T. Trindade and J. D. P.de Jesus, Mater. Res. Bull., 39, 683 (2004).
14. S. Yousaf, T. Kousar, M. B. Taj, P. O. Agboola, I. Shakir and M. F.Warsi, Ceram. Int., 45, 17806 (2019).
15. S. Muthukumaran and R. Gopalakrishnan, Opt. Mater., 34, 1946(2012).
16. R. Fatima, M. F. Warsi, M. I. Sarwar, I. Shakir, P. O. Agboola, M. F. A.Aboud and S. Zulfiqar, Ceram. Int., 47, 7642 (2021).
17. M. Aadil, S. Zulfiqar, H. Sabeeh, M. F. Warsi, M. Shahid, I. A. Alsafari and I. Shakir, Ceram. Int., 46, 17836 (2020).
18. A. Patterson, Phys. Rev., 56, 978 (1939).
19. E. Salje, Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst. Chem.,33, 574 (1977).
20. Y. Chen, R. Yu, Q. Shi, J. Qin and F. Zheng, Mater. Lett., 61, 4438(2007).
21. M. A. Khan, M. Sabir, A. Mahmood, M. Asghar, K. Mahmood,M. A. Khan, I. Ahmad, M. Sher and M. F. Warsi, J. Magn. Magn.Mater., 360, 188 (2014).
22. N. Hiroshiba, Y. Tabata, S. Yamauchi and Y. Ichikawa, Trans. Mater.Res. Soc. Jpn., 39, 423 (2014).
23. G. Nagaraju, S. Prashanth, M. Shastri, K. Yathish, C. Anupama and D. Rangappa, Mater. Res. Bull., 94, 54 (2017).
24. A. Rahman, M. Aadil, M. Akhtar, M. F. Warsi, A. Jamil, I. Shakir and M. Shahid, Ceram. Int., 46, 13517 (2020).
25. R. Estrada, N. Djohan, D. Pasole, M. Dahrul, A. Kurniawan, J.Iskandar and H. Hardhienata, The optical band gap of LiTaO3 and
Nb2O5-doped LiTaO3 thin films based on Tauc Plot method to be applied on satellite, IOP Conference Series: Earth and Environmental Science, IOP Publishing, 012092 (2017).
26. W. Zheng, Y. Chen, X. Peng, K. Zhong, Y. Lin and Z. Huang, Materials, 11, 1253 (2018).
27. R. F. de Mello Peters, P. A. M. dos Santos, T. C. Machado, D. A. R.Lopez, Ê. L. Machado and A. d. A. L. Rodriguez, Eclética Química,43, 26 (2018).
28. E. Pehlivan, G. A. Niklasson, C. G. Granqvist and P. Georén, Phys.Status Solidi (a), 207, 1772 (2010).
29. H. Karimi-Maleh, B. G. Kumar, S. Rajendran, J. Qin, S. Vadivel, D.Durgalakshmi, F. Gracia, M. Soto-Moscoso, Y. Orooji and F.Karimi, J. Mol. Liq., 314, 113588 (2020).
30. J. Zhang, E. Ding, S. Xu, Z. Li, A. Fakhri and V. K. Gupta, Int. J.Biol. Macromol., 164, 1584 (2020).
31. K. Karthik, V. Revathi and T. Tatarchuk, Mol. Cryst. Liq. Cryst., 671,17 (2018).
32. V. Revathi and K. Karthik, Chem. Data Collections, 21, 100229(2019).
33. K. Karthik, M. Madhukara Naik, M. Shashank, M. Vinuth and V.Revathi, J. Cluster Sci., 30, 311 (2019).
34. K. Karthik, M. Shashank, V. Revathi and T. Tatarchuk, Mol. Cryst.Liq. Cryst., 673, 70 (2018).
35. A. Bohe, J. Vilche, K. Jüttner, W. Lorenz and W. Paatsch, Electrochim. Acta, 34, 1443 (1989)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로