Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 4, 2022
Revised December 7, 2022
Accepted December 26, 2022
- Acknowledgements
- This research was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET) and Korea Smart Farm R&D Foundation (KosFarm) through Smart Farm Innovation Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) and Ministry of Science and ICT (MSIT), Rural Development Administration (RDA) (421042-04). This work was also supported the Industrial Strategic Technology Development Program (20012763) funded by the Minist
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Preparation of carbonaceous monolith from polyacrylonitrile@lignin hybrid composite and its sensing and adsorption capability
Abstract
A carbonaceous monolith material was produced from polyacrylonitrile@lignin (PAN@lig) composite
hybrid; the sensing and adsorption capabilities of the material were evaluated. Because the two carbon-based precursors, PAN and lignin, have different characteristics, the resulting carbonaceous hybrid material was expected to exhibit
unique properties. The controlled carbonization of PAN@lig produced a carbonaceous monolith with characteristic
external and internal structures. Electron microscopy and cyclic voltammetry analyses of the morphological and electrochemical features of the monolith revealed stable structural and electrochemical properties. The hybrid, which acted
as an electrochemical capacitor because of the electrical conductivity of the monolith, was suitable for use as a sensing
material. The feasibility of using the carbonaceous monolith as a sensing medium was demonstrated by extensive electrical measurements of a simple sensor geometry. The carbonaceous hybrid also demonstrated the capacity to adsorb
toxic chemicals/substances, such as radioactive heavy metal ions. The adsorption behavior was analyzed using several
isotherm and kinetic models.
References
2. E. Svinterikos, I. Zuburtikudis and M. Al-Marzouqi, ACS Sustainable Chem. Eng., 8, 13868 (2020).
3. E. Frank, L. M. Steudle, D. Ingildeev, J. M. Spörl and M. R. Buchmeiser, Angew. Chem. Int. Ed., 53, 5262 (2014).
4. L. Zhu and Z. Zhong, Korean J. Chem. Eng., 37, 1660 (2020).
5. A. A. Ahmad, M. Al-Raggad and N. Shareef, Carbon Lett., 31, 957(2021).
6. Q. Yan, J. Li and Z. Cai, Carbon Lett., 31, 941 (2021).
7. P. K. Dikshit, H. B. Jun and B. S. Kim, Korean J. Chem. Eng., 37,387 (2020).
8. S. Wang, L. Lyu, G. Sima, Y. Cui, B. Li, X. Zhang and L. Gan,Korean J. Chem. Eng., 36, 1042 (2019).
9. F. Flores-Céspedes, M. Villafranca-Sánchez and M. Fernández-Pérez,Int. J. Biol. Macromol., 153, 883 (2020).
10. J. Yang, J. J. Pignatello, B. Pan and B. Xing, Environ. Sci. Technol.,51, 8972 (2017).
11. X. Zhuang, M. C. Shin, B. J. Jeong, J. Y. Hwang, Y. C. Choi and J. H.Park, Korean J. Chem. Eng., 39, 1588 (2022).
12. Y. K. Lee, S. C. Chung, S. Y. Hwang, S. H. Lee, K. S. Eom, S. B.Hong, G. G. Park, B. J. Kim, J. J. Lee and H. I. Joh, Korean J. Chem.Eng., 36, 1543 (2019).
13. J. Behin, L. Rajabi, H. Etesami and S. Nikafshar, Korean J. Chem.Eng., 35, 602 (2018).
14. A. El Nemr, R. M. Aboughaly, A. El Sikaily, M. S. Masoud, M. S.Ramadan and S. Ragab, Carbon Lett., 32, 229 (2022).
15. O.-N. Hur, S. Park, S. Park, B.-H. Kang, C.-S. Lee, J.-Y. Hong, S.-H.Park and J. Bae, Mater. Chem. Phys., 285, 126166 (2022).
16. W. Thongpat, J. Taweekun and K. Maliwan, Carbon Lett., 31, 1079(2021).
17. Y. Liu, X. Cheng and S. Zhang, Carbon Lett., 32, 251 (2022).
18. M. Vinayagam, R. S. Babu, A. Sivasamy and A. L. Ferreira de Barros, Carbon Lett., 31, 1133 (2021).
19. S. Joo, B. Kim, J. An, M. Park, S. Seo, J. Y. Park and J. Bae, J. Mater.Sci., 53, 9316 (2018).
20. A. F. Zakaria, S. Kamaruzaman and N. A. Rahman, Polymers, 13,3590 (2021).
21. Y. Guo, C. Cheng, T. Huo, Y. Ren and X. Liu, Polym. Degrad. Stab.,181, 109362 (2020).
22. Q. He, P. Zhou, J. Hao, C. Lu and Y. Liu, ACS Omega, 4, 11346(2019).
23. H. Clive Liu, C.-C. Tuan, A. A. Bakhtiary Davijani, P.-H. Wang, H.Chang, C.-P. Wong and S. Kumar, Polymer, 111, 177 (2017).
24. H. Clive Liu, A.-T. Chien, B. A. Newcomb, A. A. Bakhtiary Davijani and S. Kumar, Carbon, 101, 382 (2016).
25. Z. Dai, P.-G. Ren, Y.-L. Jin, H. Zhang, F. Ren and Q. Zhang, J.Power Sources, 437, 22693 (2019).
26. S. Demiroğlu Mustafov, A. K. Mohanty, M. Misra and M. Özgür Seydibeyoğlu, Carbon, 147, 262 (2019).
27. S. Li, W. Xie, M. Wilt, J. A. Willoughby and O. J. Rojas, ACS Sustainable Chem. Eng., 6, 1988 (2018).
28. P. Liu, N. Zhang, Y. Yi, M. E. Gibril, S. Wang and F. Kong, Int. J.Biol. Macromol., 164, 2312 (2020).
29. J. Bae, S. J. Park, O. S. Kwon and J. Jang, Chem. Commun., 49, 5456(2013).
30. M. Zhao, J. Wang, C. Chong, X. Yu, L. Wang and Z. Shi, RSC Adv.,5, 101115 (2015).
31. K. Xia, Q. Ouyang, Y. Chen, X. Wang, X. Qian and L. Wang, ACS Sustainable Chem. Eng., 4, 159 (2016).
32. X. Dong, C. Lu, P. Zhou, S. Zhang, L. Wang and D. Lia, RSC Adv.,5, 42259 (2015).
33. D. I. Choi, J.-N. Lee, J. Song, P.-H. Kang, J.-K. Park and Y. M. Lee,J. Solid State Electrochem., 17, 2471 (2013).
34. A. Chithra, R. Rajeev and K. Prabhakaran, Carbon Lett., 32, 639(2022).
35. N. Zhao, C. Wang, B. Li, W. Shen, F. Kang and Z.-H. Huang, J.Mater. Sci., 57, 11809 (2022).
36. D. Xuan, J. Liu, D. Wang, Z. Lu, Q. Liu, Y. Liu, S. Li and Z. Zheng,Energy Fuels, 35, 796 (2021).
37. J. Bae, S.J. Park, O.S. Kwon and J. Jang, J. Mater. Sci., 49, 4323 (2014).
38. Y. S. Ho, D. J. Wase and C. Forster, Environ. Technol., 17, 71 (1996).
39. G. Mckay, M. Bino and A. Altamemi, Water Res., 19, 491 (1985)