ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received September 20, 2022
Revised December 2, 2022
Accepted December 16, 2022
Acknowledgements
This work is currently supported by the National Natural Science Foundation of China through contract No. 22278332. Supported by the State Key Laboratory of Clean Energy Utilization (Open Fund Project No. ZJUCEU2020020).
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Effect of cohesive particle addition on bubbling characteristics of gas-solid fluidized bed: Meso-scale mechanism

1School of Chemical Engineering, Northwest University, Xi’an, Shaanxi 710069, China 2Xi’an Key Laboratory of Special Energy Materials, Northwest University, Xi’an, Shaanxi 710069, China 3École supérieure de physique et de chimie industrielles de la Ville de Paris, ESPCI Paris, 75005, France 4State Key Laboratory of Multiphase Flow in Power Engineering (SKLMF), Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China 5State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
weiliping@nwu.edu.cn, zjulk@zju.edu.cn
Korean Journal of Chemical Engineering, June 2023, 40(6), 1529-1539(11), 10.1007/s11814-023-1376-4
downloadDownload PDF

Abstract

Due to the small particle size and large specific surface area, the cohesive particles affect the flow characteristics in a gas-solid bubbling fluidized bed. They can easily produce agglomerated and smooth heterogeneous flow under the different cohesive particle addition amounts. The influence of the cohesive particle amount on the bubbling characteristics was experimentally investigated for two typical cases: bed surface agglomerate and well-dispersed with the bed. The images of bubble rise were recorded by digital camera and processed by binarization to track bubble motion and obtained the bubble motion characteristics. An energy minimization multiscale (EMMS) model based on binary particle bubble was expanded to the flow of cohesive particles to reveal the basic mechanism of influence of the cohesive particle. By comparing the results predicted by the model with the experimental data, it is found that the change rules of bubble size and bubble rising speed are similar, which proves the feasibility of the newly developed EMMS model. A study of the structure shows that the addition of cohesive particles increases the size of the bubbles and inhibits the collapse of the bubble due to the reduction of the gas-solid resistance coefficient.

References

1. S. Pielsticker, B. Gövert, T. Kreitzberg, M. Habermehl, O. Hatzfeld and R. Kneer, Fuel, 190, 420 (2017).
2. Y. Shao, W. Zhong and A. Yu, Powder Technol., 304, 73 (2016).
3. Z. Tao and H. Li, Powder Technol., 101, 57 (1999).
4. H. Luo, B. Lu, J. Zhang, H. Wu and W. Wang, Chem. Eng. J., 326,47 (2017).
5. B. Han, The University of Western Ontario (2017).
6. J. G. Yates and D. Newton, Chem. Eng. Sci., 41, 801 (1986).
7. Z. Zou, H. Z. Li and Q. S. Zhu, Powder Technol., 212, 258 (2011).
8. L. Wei and Y. Lu, Chem. Eng. Sci., 147, 21 (2016).
9. L. Wei, Y. Lu, G. Jiang, J. Hu and J. Zhu, Chem. Eng. Res. Des., 126,255 (2017).
10. Z. Shi, W. Wang and J. Li, Chem. Eng. Sci., 66, 5541 (2011).
11. J. Li and M. Kwauk, Ind. Eng. Chem. Res., 40, 4227 (2001).
12. K. Hong, Z. Shi, A. Ullah and W. Wang, Powder Technol., 266, 424(2014).
13. S. Song, Z. Hao, L. Dong, J. Li and Y. Fang, RSC Adv., 6, 111041(2016).
14. X. Liu, Y. Jiang, C. Liu, W. Wang and J. Li, Ind. Eng. Chem. Res.,53, 2800 (2014).
15. N. Ahmad, Y. Tian, B. Lu, K. Hong, H. Wang and W. Wang, Chin.J. Chem. Eng., 27, 54 (2019).
16. N. Ahmad, Y. Tong, B. Lu and W. Wang, Chem. Eng. Sci., 200, 257(2019).
17. M. Horio and A. Nonaka, AIChE J., 33, 1865 (1987).
18. S. Wang, K. Zhang, S. Xu and X. Yang, Powder Technol., 338, 280(2018).
19. L. Wei and Y. Lu, Adv. Powder Technol., 31, 1529 (2020).
20. S. You and M. P. Wan, Langmuir, 29, 9104 (2013).
21. G. R. Caicedo, J. J. P. Marqués, M. G. a. Ruíz and J. G. Soler, Chem.Eng. Process., 42, 9 (2003).
22. Y. Lu, J. Huang and P. Zheng, Chem. Eng. J., 274, 123 (2015).
23. L. Wei, G. Jiang, H. Teng, J. Hu and J. Zhu, Particuology, 49, 95(2020).
24. R. A. Bell, Swinburne University of Technology (2000).
25. R. Fedors and R. Landel, Powder Technol., 23, 225 (1979).
26. L. Wei, Y. Gu, Y. Wang and Y. Lu, Powder Technol., 364, 264 (2020).
27. M. Horio and A. Nonaka, AIChE J., 33, 1865 (1987).
28. J. Li, W. Ge, W. Wang, N. Yang, X. Liu, L. Wang, X. He, X. Wang,J. Y. Wang and M. Kwauk, From multiscale modeling to meso-science: A chemical engineering perspective, Springer. Publications, Berlin (2013).
29. D. Gidaspow, J. Non-Newton. Fluid., 55, 207 (1994).
30. S. Karimipour and T. Pugsley, Powder Technol., 205, 1 (2011).
31. J. F. Davidson and D. Harrison, Fluidization, Academic Press. Publications, London (1971).
32. H. Y. Xie, Adv. Powder Technol., 8, 217 (1997).
33. K. S. Lim and P. K. Agarwal, Powder Technol., 69, 239 (1992).
34. L. Wei, Y. Lu, J. Zhu, G. Jiang, J. Hu and H. Teng, Korean J. Chem.Eng., 35, 2117 (2018)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로