Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received November 22, 2022
Revised December 19, 2022
Accepted December 31, 2022
- Acknowledgements
- This research was supported by the Korea Electric Power Corporation (R22EA08) and Korea Institute of Energy Technology Evaluation and Planning (2019281010007A)
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Excellent physical durability and enhanced Fano absorption of SPR sensor platform based on Au-covered silica sphere monolayer
Abstract
It is essential to secure the optical performance (sensitivity, FOM, plasmonic absorption strength, etc.),
large-area fabrication, and physical durability to improve the usability of nanostructured SPR sensors. In this study, to
ensure the physical durability of an Au-covered silica sphere monolayer (Au film over nanosphere (AuFON)) manufactured for use as an SPR sensor platform, the sensing performance and physical durability after TMOS treatment to
bind spherical silica particles were investigated. The peel-off test showed that Au and silica constituting the AuFON did
not fall off, and there was no significant difference in the sensing sensitivity and plasmonic absorption intensity before
and after TMOS treatment. In addition, when colloidal Au nanoparticles (diameter of 5 nm) were applied to as-prepared AuFON and heat-treated, it was confirmed that the Au shells of the plasmonic particles were interconnected, and
the Fano intensity increased from 3-5% to 22%
Keywords
References
2. J. Homola, Chem. Rev., 108, 462 (2008).
3. G.-Y. Lee, M. Kim, Y.-J. Quan, M.-S. Kim, T. J. Y. Kim, H.-S. Yoon,S. Min, D.-H. Kim, J.-W. Mun, J. W. Oh, I. G. Choi, C.-S. Kim, W.-
S. Chu, J. Yang, B. Bhandari, C.-M. Lee, J.-B. Ihn and S.-H. Ahn, J.Mech. Sci. Technol., 32, 987 (2018).
4. B. B. Choi, J. H. Jo, J. Bice, C. Taylor, P. Jiang and S. J. Yoo, Int. J.Energy Res., 45, 19535 (2021).
5. X. Bévenot, A. Trouillet, C. Veillas, H. Gagnaire and M. Clément,Meas. Sci. Technol., 13, 118 (2001).
6. A. Hosoki, M. Nishiyama, H. Igawa, A. Seki, Y. Choi and K. Watanabe, Sens. Actuators B Chem., 185, 53 (2013).
7. C. Fang, L. Shao, Y. Zhao, J. Wang and H. Wu, Adv. Mater., 24, 94(2012).
8. H. K. Yip, X. Zhu, X. Zhuo, R. Jiang, Z. Yang and J. Wang, Adv. Opt.Mater., 5, 1700740 (2017).
9. Z. Fang and X. Zhu, Adv. Mater., 25, 3840 (2013).
10. E. M. Larsson, C. Langhammer, I. Zorić and B. Kasemo, Science,326, 1091 (2009).
11. Y. Fang, B. M. Phillips, K. Askar, B. Choi, P. Jiang and B. Jiang, J.
Mater. Chem. C, 1, 6031 (2013).12. T. K. Sau, A. L. Rogach, F. Jäckel, T. A. Klar and J. Feldmann, Adv.Mater., 22, 1805 (2010).
13. Y. Sun and Y. Xia, Anal. Chem., 74, 5297 (2002).
14. B. Choi, X. Dou, Y. Fang, B. M. Phillips and P. Jiang, Phys. Chem.Chem. Phys., 18, 26078 (2016).
15. B. B. Choi, B. Kim, Y. Chen and P. Jiang, J. Electrochem. Sci. Technol., 12, 167 (2021).
16. O. A. Hazzazi, G. A. Attard, P. B. Wells, F. J. Vidal-Iglesias and M.Casadesus, J. Electroanal. Chem., 625, 123 (2009).
17. B. B. Choi, B. Kim, J. Bice, C. Taylor and P. Jiang, J. Ind. Eng. Chem.,116, 321 (2022).
18. D. Mortazavi, A. Z. Kouzani and K. C. Vernon, Prog. Electromagn.Res., 130, 429 (2012).
19. J.A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N.J. Halas, V.N. Manoharan, P. Nordlander, G. Shvets and F. Capasso, Science, 328, 1135(2010).
20. Y. Xia and N. J. Halas, MRS Bull., 30, 338 (2005).
21. K. M. Mayer and J. H. Hafner, Chem. Rev., 111, 3828 (2011).
22. K. Askar, B. M. Phillips, Y. Fang, B. Choi, N. Gozubenli, P. Jiang and B. Jiang, Colloids Surf. A Physicochem. Eng. Asp., 439, 84 (2013).
23. Y.-J. Lee, N. B. Schade, L. Sun, J. A. Fan, D. Ri Bae, M. M. Mariscal, G. Lee, F. Capasso, S. Sacanna, V. N. Manoharan and G.-R.Yi, ACS Nano, 7, 11064 (2013).
24. Y. Chen and H. Ming, Photonic Sensors, 2, 37 (2012).
25. B. M. Phillips, P. Jiang and B. Jiang, Appl. Phys. Lett., 99, 191103(2011).
26. Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z.K. Zhou, X. Wang, C. Jin and J. Wang, Nat. Commun., 4, 1 (2013).
27. Z. Liu, M. Yu, S. Huang, X. Liu, Y. Wang, M. Liu, P. Pan and G.Liu, J. Mater. Chem. C, 3, 4222 (2015).
28. E. M. Hicks, X. Zhang, S. Zou, O. Lyandres, K. G. Spears, G. C.Schatz and R. P. Van Duyne, J. Phys. Chem. B, 109, 22351 (2005).
29. B. B. Choi, B. Kim, Y. Chen, S. J. Yoo, Y. Cho and P. Jiang, J. Ind.Eng. Chem., 99, 179 (2021).30. E. Prodan, C. Radloff, N. J. Halas and P. Nordlander, Science, 302,419 (2003).
31. P. Nordlander, C. Oubre, E. Prodan, K. Li and M. I. Stockman,Nano Lett., 4, 899 (2004).
32. X. Zhang, S. Ye, X. Zhang and L. Wu, J. Mater. Chem. C, 3, 2282(2015).
33. C. H. Sun, A. Gonzalez, N. C. Linn, P. Jiang and B. Jiang, Appl. Phys.Lett., 92, 051107 (2008).
34. X. Zhang, M. A. Young, O. Lyandres and R. P. Van Duyne, J. Am.Chem. Soc., 127, 4484 (2005).
35. X. Zhu, F. Xie, L. Shi, X. Liu, N. A. Mortensen, S. Xiao, J. Zi and W. Choy, Opt. Lett., 37, 2037 (2012).
36. Y. Oh, S. Park, M. Kang, J. Choi, Y. Nam and K. Jeong, Small, 7,184 (2011).
37. B. C. Heo, S. Kim, S. G. Jang, S. Y. Lee and S. Yang, Adv. Mater., 21,1726 (2009).
38. M. R. Gonçalves, J. Phys. D. Appl. Phys., 47, 213001 (2014).
39. N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae and V. V. Moshchalkov, Nano Lett., 11, 391(2011).
40. J. Sun, G. Li and W. Z. Liang, Phys. Chem. Chem. Phys., 17, 16835(2015).
41. B. Luk’Yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen and C. T. Chong, Nat. Mater., 9, 707 (2010).
42. W.-S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P.Nordlander, N. J. Halas and S. Link, Nano Lett., 12, 4977 (2012).
43. J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander and N. J. Halas, Nano Lett., 12, 1058 (2012).
44. T. Feng, J. Xiang, C. Liu and Z. Geng, Opt. Commun., 530, 129172(2023).
45. D. M. Welakuh and P. Narang, ACS Photonics, 9, 2946 (2022).
46. M. M. Petrić, M. Kremser, M. Barbone, A. Nolinder, A. Lyamkina,A. V. Stier, M. Kaniber, K. Müller and J. J. Finley, Nano Lett., 22,561 (2022).
47. G. S. Attard, J. M. Corker, C. G. Göltner, S. Henke and R. H. Templer, Angew. Chem. Int. Ed. English, 36, 1315 (1997).
48. K. M. Kulinowski, P. Jiang, H. Vaswani and V. L. Colvin, Adv. Mater.,12, 833 (2000).
49. P. Jiang, J. Cizeron, J. F. Bertone and V. L. Colvin, J. Am. Chem. Soc.,121, 7957 (1999).
50. O.-H. Kim, Y.-H. Cho, S. H. Kang, H.-Y. Park, M. Kim, J. W. Lim,D. Y. Chung, M. J. Lee, H. Choe and Y.-E. Sung, Nat. Commun., 4,2473 (2013).
51. X. Zhou, X. Cheng, Y. Zhu, A. A. Elzatahry, A. Alghamdi, Y. Deng and D. Zhao, Chin. Chem. Lett., 29, 405 (2018).
52. S. Li, M. Zhang and H. Wang, Sci. Rep., 11, 17158 (2021).
53. H. Baur, K. Lempenauer, M. Hartweg, G. Stephani, O. Andersen and O. Delverdier, in Materials for transportation technology, John
Wiley & Sons, Ltd, 95 (2000).
54. P. Jiang, J. F. Bertone and V. L. Colvin, Science, 291, 453 (2001).
55. S. Coyle, M. C. Netti, J. J. Baumberg, M. A. Ghanem, P. R. Birkin,P. N. Bartlett and D. M. Whittaker, Phys. Rev. Lett., 87, 15 (2001).
56. M. Brust, M. Walker, D. Bethell, D. J. Schiffrin and R. Whyman, J.Chem. Soc. Chem. Commun., 7, 801 (1994).
57. C. Radloff and N. J. Halas, Nano Lett., 4, 1323 (2004).
58. N. J. Halas, S. Lal, S. Link, W. Chang, D. Natelson, J. H. Hafner and P. Nordlander, Adv. Mater., 24, 4842 (2012).
59. Q. Li, C. W. Kuo, Z. Yang, P. Chen and K. C. Chou, Phys. Chem.Chem. Phys., 11, 3436 (2009).
60. E. Prodan, P. Nordlander and N. J. Halas, Nano Lett., 3, 1411 (2003)