ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 19, 2022
Revised December 9, 2022
Accepted January 31, 2023
Acknowledgements
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (2021M3 H4A1A02042948, 2021M3H4A3A02086681). This work was also supported by the New & Renewable Energy Core Technology Program of KETEP (20203020030010) in Korea
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Current progress of electrocatalysts for anion exchange membrane fuel cells

1Hydrogen Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Korea 2Division of Energy & Environmental Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Korea 3KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea 4Energy and Environment Laboratory, Korea Electric Power Corp. Research Institute, Daejeon 34056, Korea
ysj@kist.re.kr
Korean Journal of Chemical Engineering, July 2023, 40(7), 1549-1562(14), 10.1007/s11814-023-1444-9
downloadDownload PDF

Abstract

The transition from a carbon-centered economy to an era of renewable energy has led to global attention on hydrogen energy, ultimately leading to the development of fuel cells using hydrogen as a fuel. In response to global demand, overall fuel cell technology has grown remarkably over the past few years; yet, commercialization remains sluggish owing to cost. As the cathode of a proton exchange membrane fuel cell (PEMFC), which is the most commercialized fuel cell, is markedly dependent on platinum (Pt), anion exchange membrane fuel cells (AEMFCs), which can utilize non-precious materials as cathode catalysts, have emerged as a promising alternative. Earth-abundant metals are used as cathode catalysts, and metal-free materials are used to achieve comparable performance to Pt. Compared to the single-cell performance of Pt catalysts, a gap still exists; however, the applicability of non-noble metals has been extensively evaluated. If catalyst development is accompanied by efficient electrode structure design, a significant part of the cost problem can be overcome. AEMFCs have advantages in the ORR of cathodes compared to PEMFCs; however, the HOR kinetics are quite sluggish. Therefore, the design of HOR catalysts requires another approach, not only to enhance their intrinsic activity, but also consider the poisoning induced by the use of ionomers besides PEMFCs. Therefore, a strategy based on the HOR pathway is required to lower the barrier of the rate-determining step. In this review, catalysts for AEMFCs were introduced based on their classification, and information on recent trends and issues related to catalysts was presented.

References

1. A. M. Oliveira, R. R. Beswick and Y. Yan, Curr. Opin. Chem. Eng.,33 (2021).
2. M. Yue, H. Lambert, E. Pahon, R. Roche, S. Jemei and D. Hissel,Renew. Sust. Energy Rev., 146 (2021).
3. F. Xiao, Y. C. Wang, Z. P. Wu, G. Chen, F. Yang, S. Zhu, K. Siddharth, Z. Kong, A. Lu, J. C. Li, C. J. Zhong, Z. Y. Zhou and M.Shao, Adv. Mater., 33, e2006292 (2021).
4. R. L. Borup, A. Kusoglu, K. C. Neyerlin, R. Mukundan, R. K. Ahluwalia, D. A. Cullen, K. L. More, A. Z. Weber and D. J. Myers, Curr.Opin. Electrochem., 21, 192 (2020).
5. A. G. Olabi, T. Wilberforce and M. A. Abdelkareem, Energy, 214 (2021).
6. Y. Wang, D. F. Ruiz Diaz, K. S. Chen, Z. Wang and X. C. Adroher,Mater. Today, 32, 178 (2020).
7. Y. Wang, Y. Pang, H. Xu, A. Martinez and K. S. Chen, Energy Environ. Sci., 15, 2288 (2022).
8. Y. Luo, Y. Wu, B. Li, T. Mo, Y. Li, S.-P. Feng, J. Qu and P. K. Chu, J.Energy Storage, 42 (2021).
9. M. Liu, Z. Zhao, X. Duan and Y. Huang, Adv. Mater., 31, e1802234 (2019).
10. J. K. Norskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin,T. Bligaard and H. Jonsson, J. Phys. Chem. B, 108, 17886 (2004).
11. X. Zhu, X. Tan, K. H. Wu, S. C. Haw, C. W. Pao, B. J. Su, J. Jiang,S. C. Smith, J. M. Chen, R. Amal and X. Lu, Angew. Chem. Int. Ed.Eng., 60, 21911 (2021).
12. X. Ren, B. Liu, X. Liang, Y. Wang, Q. Lv and A. Liu, J. Electrochem.Soc., 168 (2021).
13. C. He, J. J. Zhang and P. K. Shen, J. Mater. Chem. A, 2 (2014).
14. Y. Mun, M. J. Kim, S.-A. Park, E. Lee, Y. Ye, S. Lee, Y.-T. Kim, S.Kim, O.-H. Kim, Y.-H. Cho, Y.-E. Sung and J. Lee, Appl. Catal. B:Environ., 222, 191 (2018).
15. J. A. Varnell, J. S. Sotiropoulos, T. M. Brown, K. Subedi, R. T. Haasch,C. E. Schulz and A. A. Gewirth, ACS Energy Lett., 3, 823 (2018).
16. J. Y. Choi, L. J. Yang, T. Kishimoto, X. G. Fu, S. Y. Ye, Z. W. Chenand D. Banham, Energy Environ. Sci., 10, 296 (2017).
17. K. Kumar, P. Gairola, M. Lions, N. Ranjbar-Sahraie, M. Mermoux,L. Dubau, A. Zitolo, F. Jaouen and F. Maillard, ACS Catal., 8, 11264 (2018).
18. B. G. Pollet, S. S. Kocha and I. Staffell, Curr. Opin. Electrochem., 16,90 (2019).
19. S. Du, Engineering, 7, 33 (2021).
20. A. Sajid, E. Pervaiz, H. Ali, T. Noor and M. M. Baig, Int. J. Energy Res., 46, 6953 (2022).
21. Y. Wang, J. Li and Z. Wei, J. Mater. Chem. A, 6, 8194 (2018).
22. T. B. Ferriday and P. H. Middleton, Int. J. Hydrogen Energy, 46,18489 (2021).
23. L. Yang, J. Shui, L. Du, Y. Shao, J. Liu, L. Dai and Z. Hu, Adv. Mater.,31, e1804799 (2019).
24. Z. C. Yao, T. Tang, Z. Jiang, L. Wang, J. S. Hu and L. J. Wan, ACS Nano, 16, 5153 (2022).
25. J. Hu, K. A. Kuttiyiel, K. Sasaki, C. Zhang and R. R. Adzic, J. Electrochem. Soc., 165, J3355 (2018).
26. W. Sheng, H. A. Gasteiger and Y. Shao-Horn, J. Electrochem. Soc.,157 (2010).
27. J. Durst, A. Siebel, C. Simon, F. Hasché, J. Herranz and H. A. Gasteiger, Energy Environ. Sci., 7, 2255 (2014).
28. T. Zhao, G. Wang, M. Gong, D. Xiao, Y. Chen, T. Shen, Y. Lu, J.Zhang, H. Xin, Q. Li and D. Wang, ACS Catal., 10, 15207 (2020).
29. J. Zhang, X. Qu, L. Shen, G. Li, T. Zhang, J. Zheng, L. Ji, W. Yan, Y.Han, X. Cheng, Y. Jiang and S. Sun, Small, 17, e2006698 (2021).
30. C. Zhan, Y. Xu, L. Bu, H. Zhu, Y. Feng, T. Yang, Y. Zhang, Z. Yang,B. Huang, Q. Shao and X. Huang, Nat. Commun., 12, 6261 (2021).
31. D. J. Weber, C. Dosche and M. Oezaslan, J. Mater. Chem. A, 9, 15415 (2021).
32. J. N. Schwämmlein, B. M. Stühmeier, K. Wagenbauer, H. Dietz, V.Tileli, H. A. Gasteiger and H. A. El-Sayed, J. Electrochem. Soc., 165,H229 (2018).
33. W. Ni, A. Krammer, C. S. Hsu, H. M. Chen, A. Schuler and X. Hu,Angew. Chem. Int. Ed. Eng., 58, 7445 (2019).
34. Y. Gao, H. Peng, Y. Wang, G. Wang, L. Xiao, J. Lu and L. Zhuang,ACS Appl. Mater. Interfaces, 12, 31575 (2020).
35. S. Qin, Y. Duan, X. L. Zhang, L. R. Zheng, F. Y. Gao, P. P. Yang, Z. Z.Niu, R. Liu, Y. Yang, X. S. Zheng, J. F. Zhu and M. R. Gao, Nat.Commun., 12, 2686 (2021).
36. F. Yang, P. Han, N. Yao, G. Cheng, S. Chen and W. Luo, Chem. Sci.,11, 12118 (2020).
37. J.-T. Ren, Y.-S. Wang, Y.-J. Song, L. Chen and Z.-Y. Yuan, Appl.Catal. B: Environ., 309 (2022).
38. W. Ni, T. Wang, F. Heroguel, A. Krammer, S. Lee, L. Yao, A. Schuler,J. S. Luterbacher, Y. Yan and X. Hu, Nat. Mater., 21, 804 (2022).
39. V. F. Valdés-López, T. Mason, P. R. Shearing and D. J. L. Brett, Prog.Energy Combust. Sci., 79 (2020).
40. Y. Duan, Z. Y. Yu, L. Yang, L. R. Zheng, C. T. Zhang, X. T. Yang,F. Y. Gao, X.L. Zhang, X. Yu, R. Liu, H. H. Ding, C. Gu, X. S. Zheng,L. Shi, J. Jiang, J. F. Zhu, M. R. Gao and S. H. Yu, Nat. Commun.,11, 4789 (2020).
41. B. Shabani, M. Hafttananian, S. Khamani, A. Ramiar and A. A. Ranjbar, J. Power Sources, 427, 21 (2019).
42. M. Ma, G. Li, W. Yan, Z. Wu, Z. Zheng, X. Zhang, Q. Wang, G.Du, D. Liu, Z. Xie, Q. Kuang and L. Zheng, Adv. Energy Mater., 12 (2022).
43. G. A. Camara, E. A. Ticianelli, S. Mukerjee, S. J. Lee and J. McBreen,J. Electrochem. Soc., 149 (2002).
44. H. T. Chung, U. Martinez, I. Matanovic and Y. S. Kim, J. Phys. Chem.Lett., 7, 4464 (2016).
45. J. H. Dumont, A. J. Spears, R. P. Hjelm, M. Hawley, S. Maurya, D.Li, G. Yuan, E. B. Watkins and Y. S. Kim, ACS Appl. Mater. Interfaces, 12, 1825 (2020).
46. S. Maurya, J. H. Dumont, C. N. Villarrubia, I. Matanovic, D. Li, Y. S.Kim, S. Noh, J. Han, C. Bae, H. A. Miller, C. H. Fujimoto and D. R.Dekel, ACS Catal., 8, 9429 (2018).
47. I. Matanovic, H. T. Chung and Y. S. Kim, J. Phys. Chem. Lett., 8,4918 (2017).
48. R. Zeng, Y. Yang, X. R. Feng, H. Q. Li, L. M. Gibbs, F. J. DiSalvo and H. D. Abruna, Sci. Adv., 8 (2022).
49. D. M. Morales, M. A. Kazakova, S. Dieckhöfer, A. G. Selyutin, G. V.Golubtsov, W. Schuhmann and J. Masa, Adv. Funct. Mater., 30(2019).
50. Y. Yang, H. Peng, Y. Xiong, Q. Li, J. Lu, L. Xiao, F. J. DiSalvo, L.Zhuang and H. D. Abruña, ACS Energy Lett., 4, 1251 (2019).
51. X. Chen, N. Wang, K. Shen, Y. Xie, Y. Tan and Y. Li, ACS Appl.Mater. Interfaces, 11, 25976 (2019).
52. S. Lee, M. Choun, Y. Ye, J. Lee, Y. Mun, E. Kang, J. Hwang, Y. H.Lee, C. H. Shin, S. H. Moon, S. K. Kim, E. Lee and J. Lee, Angew.Chem. Int. Ed. Eng., 54, 9230 (2015).
53. L. Rebollar, S. Intikhab, J. D. Snyder and M. H. Tang, J. Electrochem.Soc., 165, J3209 (2018).
54. Q. Jia, E. Liu, L. Jiao, J. Li and S. Mukerjee, Curr. Opin. Electrochem., 12, 209 (2018).
55. X. Wang, Y. Zheng, W. Sheng, Z. J. Xu, M. Jaroniec and S.-Z. Qiao,Mater. Today, 36, 125 (2020).
56. E. Liu, L. Jiao, J. Li, T. Stracensky, Q. Sun, S. Mukerjee and Q. Jia,Energy Environ. Sci., 13, 3064 (2020).
57. X. Tian, P. Zhao and W. Sheng, Adv. Mater., 31, e1808066 (2019).
58. Y. Qiu, X. Xie, W. Li and Y. Shao, Chin. J. Catal., 42, 2094 (2021).
59. R. Samanta, R. Mishra and S. Barman, ACS Sust. Chem. Eng., 10,3704 (2022).
60. S. Watzele, J. Fichtner, B. Garlyyev, J. N. Schwämmlein and A. S.Bandarenka, ACS Catal., 8, 9456 (2018).
61. F. Song, T. Zhang, Y. Qian, J. Shaw, S. Chen, G. Chen, Y. Sun and Y. Rao, Mater. Today Energy, 22 (2021).
62. Y.-F. Xing, Y. Zhou, Y.-B. Sun, C. Chi, Y. Shi, F.-B. Wang and X.-H.Xia, J. Electroanal. Chem., 872 (2020).
63. L. Jiao, E. Liu, S. Hwang, S. Mukerjee and Q. Jia, ACS Catal., 11,8165 (2021).
64. S. Zhu, X. Qin, Y. Yao and M. Shao, J. Am. Chem. Soc., 142, 8748 (2020).
65. X. Qin, S. Zhu, Y. Wang, D. Pan and M. Shao, Electrochim. Acta, 425(2022).
66. X. Yang, J. Nash, N. Oliveira, Y. Yan and B. Xu, Angew. Chem. Int.Ed. Eng., 58, 17718 (2019).
67. S. A. Giles, J. C. Wilson, J. Nash, B. Xu, D. G. Vlachos and Y. Yan, J.Catal., 367, 328 (2018).
68. Y. Xue, L. Shi, X. Liu, J. Fang, X. Wang, B. P. Setzler, W. Zhu, Y. Yan and Z. Zhuang, Nat. Commun., 11, 5651 (2020).
69. S. Lu and Z. Zhuang, J. Am. Chem. Soc., 139, 5156 (2017).
70. D. Strmcnik, M. Uchimura, C. Wang, R. Subbaraman, N. Danilovic, D. van der Vliet, A. P. Paulikas, V. R. Stamenkovic and N. M.
Markovic, Nat. Chem., 5, 300 (2013).
71. S. M. Alia, B. S. Pivovar and Y. Yan, J. Am. Chem. Soc., 135, 13473 (2013).
72. J. Ohyama, T. Sato, Y. Yamamoto, S. Arai and A. Satsuma, J. Am.Chem. Soc., 135, 8016 (2013).
73. J. Zheng, Z. Zhuang, B. Xu and Y. Yan, ACS Catal., 5, 4449 (2015).
74. M. E. Scofield, Y. Zhou, S. Yue, L. Wang, D. Su, X. Tong, M. B. Vukmirovic, R. R. Adzic and S. S. Wong, ACS Catal., 6, 3895 (2016).
75. B. Qin, H. Yu, J. Chi, J. Jia, X. Gao, D. Yao, B. Yi and Z. Shao, RSC Adv., 7, 31574 (2017).
76. J. Jiang, S. Tao, Q. He, J. Wang, Y. Zhou, Z. Xie, W. Ding and Z.Wei, J. Mater. Chem. A, 8, 10168 (2020).
77. M. Wang, H. Yang, J. Shi, Y. Chen, Y. Zhou, L. Wang, S. Di, X.Zhao, J. Zhong, T. Cheng, W. Zhou and Y. Li, Angew. Chem. Int.Ed. Eng., 60, 5771 (2021).
78. F. Song, W. Li, J. Yang, G. Han, P. Liao and Y. Sun, Nat. Commun.,9, 4531 (2018).
79. F. Yang, X. Bao, P. Li, X. Wang, G. Cheng, S. Chen and W. Luo,Angew. Chem. Int. Ed. Eng., 58, 14179 (2019).
80. R. Ma, G. Lin, Y. Zhou, Q. Liu, T. Zhang, G. Shan, M. Yang and J.Wang, npj Comput. Mater., 5 (2019).
81. X. Ge, A. Sumboja, D. Wuu, T. An, B. Li, F. W. T. Goh, T. S. A.Hor, Y. Zong and Z. Liu, ACS Catal., 5, 4643 (2015).
82. B. B. Blizanac, P. N. Ross and N. M. Markovic, Electrochim. Acta,52, 2264 (2007).
83. N. Ramaswamy and S. Mukerjee, J. Phys. Chem. C, 115, 18015 (2011).
84. N. Ramaswamy and S. Mukerjee, Adv. Phys. Chem., 2012, 1 (2012).
85. J. Suntivich, H. A. Gasteiger, N. Yabuuchi, H. Nakanishi, J. B. Goodenough and Y. Shao-Horn, Nat. Chem., 3, 546 (2011).
86. H. Osgood, S. V. Devaguptapu, H. Xu, J. Cho and G. Wu, Nano Today, 11, 601 (2016).
87. Y. Wang, Y. Yang, S. Jia, X. Wang, K. Lyu, Y. Peng, H. Zheng, X.Wei, H. Ren, L. Xiao, J. Wang, D. A. Muller, H. D. Abruna, B. J.Hwang, J. Lu and L. Zhuang, Nat. Commun., 10, 1506 (2019).
88. J. Jo, J. M. Yoo, D. H. Mok, H. Y. Jang, J. Kim, W. Ko, K. Yeom,M. S. Bootharaju, S. Back, Y. E. Sung and T. Hyeon, Nano Lett.,22, 3636 (2022).
89. J. Kim, W. Ko, J. M. Yoo, V. K. Paidi, H. Y. Jang, M. Shepit, J. Lee,H. Chang, H. S. Lee, J. Jo, B. H. Kim, S. P. Cho, J. van Lierop, D.Kim, K. S. Lee, S. Back, Y. E. Sung and T. Hyeon, Adv. Mater., 34,e2107868 (2022).
90. M. Sharma, J.-H. Jang, D. Y. Shin, J. A. Kwon, D.-H. Lim, D. Choi,H. Sung, J. Jang, S.-Y. Lee, K. Y. Lee, H.-Y. Park, N. Jung and S. J.Yoo, Energy Environ. Sci., 12, 2200 (2019).
91. H. Singh, S. Zhuang, B. Ingis, B. B. Nunna and E. S. Lee, Carbon,151, 160 (2019).
92. D. Wang, P. Yang, L. Liu, W. Wang and Z. Chen, Mater. Today Energy, 26 (2022).
93. H. Xu, D. Wang, P. Yang, A. Liu, R. Li, Y. Li, L. Xiao, X. Ren, J.Zhang and M. An, J. Mater. Chem. A, 8, 23187 (2020).
94. S. Park, M. Her, H. Shin, W. Hwang and Y.-E. Sung, ACS Appl.Energy Mater., 4, 1459 (2021).
95. A. Zitolo, V. Goellner, V. Armel, M. T. Sougrati, T. Mineva, L. Stievano, E. Fonda and F. Jaouen, Nat. Mater., 14, 937 (2015).
96. Y. J. Sa, D. J. Seo, J. Woo, J. T. Lim, J. Y. Cheon, S. Y. Yang, J. M.Lee, D. Kang, T. J. Shin, H. S. Shin, H. Y. Jeong, C. S. Kim, M. G.Kim, T. Y. Kim and S. H. Joo, J. Am. Chem. Soc., 138, 15046 (2016).
97. S. H. Lee, J. Kim, D. Y. Chung, J. M. Yoo, H. S. Lee, M. J. Kim, B. S.Mun, S. G. Kwon, Y. E. Sung and T. Hyeon, J. Am. Chem. Soc., 141,
2035 (2019).
98. K. Im, K. H. Choi, B. J. Park, S. J. Yoo and J. Kim, Energy Conv.Manag., 265 (2022).
99. J. Lee, H. S. Kim, J.-H. Jang, E.-H. Lee, H.-W. Jeong, K.-S. Lee, P.Kim and S. J. Yoo, ACS Sust. Chem. Eng., 9, 7863 (2021).
100. H. S. Kim, C. H. Lee, J.-H. Jang, M. S. Kang, H. Jin, K.-S. Lee, S. U.Lee, S. J. Yoo and W. C. Yoo, J. Mater. Chem. A, 9, 4297 (2021).
101. E. Proietti, F. Jaouen, M. Lefevre, N. Larouche, J. Tian, J. Herranzand J. P. Dodelet, Nat. Commun., 2, 416 (2011).
102. H. Zhang, S. Hwang, M. Wang, Z. Feng, S. Karakalos, L. Luo, Z.Qiao, X. Xie, C. Wang, D. Su, Y. Shao and G. Wu, J. Am. Chem Soc., 139, 14143 (2017).
103. Y. Chen, S. Ji, Y. Wang, J. Dong, W. Chen, Z. Li, R. Shen, L. Zheng,Z. Zhuang, D. Wang and Y. Li, Angew. Chem. Int. Ed. Eng., 56,6937 (2017).
104. G.-S. Kang, J.-H. Jang, S.-Y. Son, Y.-K. Lee, D. C. Lee, S. J. Yoo, S.Lee and H.-I. Joh, J. Power Sources, 520 (2022).
105. J. Y. Jung, S. Kim, J.-G. Kim, M. J. Kim, K.-S. Lee, Y.-E. Sung, P.Kim, S. J. Yoo, H.-K. Lim and N. D. Kim, Nano Energy, 97 (2022).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로