Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 25, 2022
Revised December 14, 2022
Accepted December 20, 2022
- Acknowledgements
- This work is supported by the National Natural Science Foundation of China (No. 51779025 and No. 52001045), Science and Technology Innovation Foundation of Dalian, China (No. 2021 JJ11CG004). Particularly, thanks for Huixin Guo’s help.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Effect of porosity gradient in cathode gas diffusion layer on electrochemical performance of proton exchange membrane fuel cells
Abstract
Proton exchange nembrane fuel cells (PEMFCs) are highly promising energy devices for future transportation and distributed power stations. The electrochemical performance of PEMFCs assembled with gas diffusion layer
(GDL) of different porosity gradient distributions has been analyzed using the lattice Boltzmann method. A singlephase multi-component lattice Boltzmann model employing the active approach was developed to investigate the reactive gas flow within the GDL. Two types of GDLs with the same porosity, namely multilayer porosity gradient GDLs
and linear porosity gradient GDLs, were generated to investigate the effect of the porosity gradient of the GDL on the
electrochemical performance of PEMFC. The results show that the two types of porosity gradient GDL improve oxygen starvation problems and enhance water management, and that the GDLs with smaller porosity gradients can
increase the mean current density. This paper develops the study of pore-scale analysis of PEMFC performance and
can provide guidance for the design of GDL structures.
References
2. D. Joo, K. Han, J. H. Jang and S. Park, Korean J. Chem. Eng., 36,299 (2019).
3. G. R. Molaeimanesh, M. H. Shojaeefard and M. R. Moqaddari,Korean J. Chem. Eng., 36, 136 (2019).
4. A. K. Hussein, H. K. Hamzah, F. H. Ali and M. Afrand, Korean J.Chem. Eng., 39, 887 (2022).
5. D. Zhang, Q. Cai and S. Gu, Electrochim. Acta, 262, 282 (2018).
6. D. Froning, J. Brinkmann, U. Reimer, V. Schmidt, W. Lehnert and D. Stolten, Electrochim. Acta, 110, 325 (2013).
7. W.-Z. Fang, Y.-Q. Tang, L. Chen, Q.-J. Kang and W.-Q. Tao, Int. J.Heat Mass Transf., 126, 243 (2018).
8. M. Espinoza-Andaluz, R. Reyna, A. Moyón, T. Li and M. Andersson, Int. J. Hydrogen Energy, 45, 29824 (2020).
9. Z. Jiang, G. Yang, S. Li, Q. Shen, J. Liao, H. Wang, M. EspinozaAndaluz, R. Ying and X. Pan, Comput. Mater. Sci., 190, 110286 (2021).
10. H. Zhang, L. Zhu, H. B. Harandi, K. Duan, R. Zeis, P.-C. Sui and P.‐Y. A. Chuang, Energy Conv. Manag., 241, 114293 (2021).
11. Y. Gao, T. Jin, X. Wu and T. Zhang, Energies, 12, 2808 (2019).
12. P. A. García-Salaberri, I. V. Zenyuk, A. D. Shum, G. Hwang, M. Vera,A. Z. Weber and J. T. Gostick, Int. J. Heat Mass Transf., 127, 687 (2018).
13. L. Zhu, H. Zhang, L. Xiao, A. Bazylak, X. Gao and P.-C. Sui, J.Power Sources, 496, 229822 (2021).
14. A. Nabovati, J. Hinebaugh, A. Bazylak and C. H. Amon, J. Power Sources, 248, 83 (2014).
15. M. Yang, Y. Jiang, J. Liu, S. Xu and A. Du, Int. J. Hydrogen Energy,47, 10366 (2022).
16. Y. Ira, Y. Bakhshan and J. Khorshidimalahmadi, Int. J. Hydrogen Energy, 46, 17397 (2021).
17. D. H. Jeon, J. Power Sources, 475, 228578 (2020).
18. J.-H. Lin, W.-H. Chen, Y.-J. Su and T.-H. Ko, Fuel, 87, 2420 (2008).
19. S. Li, J. Yuan, M. Andersson, G. Xie and B. Sundén, J. Electrochem.Energy Convers. Storage, 14, 031007 (2017).
20. R. Bahoosh, M. Jafari and S. S. Bahrainian, Korean J. Chem. Eng.,38, 1703 (2021).
21. M. Nazemian and G. R. Molaeimanesh, Acta Mech. Sin., 36, 367 (2020).
22. G. R. Molaeimanesh and M. Dahmardeh, Fuel Cells, 21, 208 (2021).
23. L. Chen, H.-B. Luan, Y.-L. He and W.-Q. Tao, Int. J. Therm. Sci.,51, 132 (2012).
24. G. R. Molaeimanesh and M. H. Akbari, Korean J. Chem. Eng., 32,397 (2015).
25. R. Bahoosh, M. Jafari and S. S. Bahrainian, J. Heat Mass Transf. Res.,6, 105 (2019).
26. M. Habiballahi, H. Hassanzadeh, M. Rahnama, S. A. Mirbozorgi and E. J. Javaran, Proc. Inst. Mech. Eng. Part A-J. Power Energy, 235,546 (2021).
27. X. Shangguan, Y. Li, Y. Qin, S. Cao, J. Zhang and Y. Yin, Electrochim. Acta, 371, 137814 (2021).
28. Y.-X. Huang, C.-H. Cheng, X.-D. Wang and J.-Y. Jang, Energy, 35,4786 (2010).
29. B. K. Kanchan, P. Randive and S. Pati, Int. J. Hydrogen Energy, 45,21836 (2020).
30. M. Espinoza, B. Sundén and M. Andersson, ECS Trans, 78, 2785 (2017).
31. H. Wang, G. Yang, S. Li, Q. Shen, J. Liao, Z. Jiang, M. EspinozaAndaluz, F. Su and X. Pan, Int. J. Hydrogen Energy, 46, 22107 (2021).
32. H. Wang, G. Yang, S. Li, Q. Shen, J. Liao, Z. Jiang, G. Zhang, H.Zhang and F. Su, Energy Fuels, 35, 15058 (2021).
33. Y. Ira, Y. Bakhshan and J. Khorshidimalahmadi, Proc. Inst. Mech.Eng. Part A-J. Power Energy, 236, 61 (2022).
34. Q. Zou and X. He, Phys. Fluids, 9, 1591 (1997)