ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received December 10, 2022
Revised February 8, 2023
Accepted February 9, 2023
Acknowledgements
This work is supported by Hyundai Motor Company, National Research Foundation of Korea (NRF) Grant funded by the Korean government (MSIT) (No. 2021R1C1C1005404 and No. 2021R1 A5A1028138), GIST Research Institute (GRI) grant funded by the GIST in 2023.
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Pt substitution in Pd/Rh three-way catalyst for improved emission control

1Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (Inn-ECOSysChem) and School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Gwangju 61005, Korea 2Center for Environment & Sustainable Resources, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Daejeon 34114, Korea 3Energy & Environmental Chemical Systems Lab, IFAT (Institute of Fundamental & Advanced Technology), R&D Division, Hyundai Motor Company, 37, Cheoldobagmulgwan-ro, Uiwang-si, Gyeonggi-do 16082, Korea 4Department of Future Energy Convergence, Seoul National University of Science and Technology, 232 Gongreung-ro, Nowon-gu, Seoul 01811, Kore 5Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montreal, QC, H4B1R6, Canada
dkang@seoultech.ac.kr, melanie.hazlett@concordia.ca, sbkang@gist.ac.kr
Korean Journal of Chemical Engineering, July 2023, 40(7), 1606-1615(10), 10.1007/s11814-023-1441-z
downloadDownload PDF

Abstract

Gasoline engine vehicle emissions, such as nitrogen oxides (NOx), CO and hydrocarbons (HCs), are a major source of air pollution, and require improved emission control systems. By-product NH3 and N2O emissions, which come from low N2 selectivity in the emission control system, are also a major concern. The current study has comprehensively investigated the impact of the Pt-substitution in commercial Pd/Rh-based three-way catalyst (TWC) formulations with respect to catalytic performance. TWC performance was systematically evaluated with respect to the warm-up catalytic converter (WCC) and the under-floor catalytic converter (UCC). This included evaluating TWC activity under realistic simulated exhaust conditions including fuel-rich, stoichiometric and fuel-lean (0.991.01). Ptsubstituted TWCs outperformed Pd-based counterparts, regardless of the converter type (WCC or UCC), in CO, C3H6 and C3H8 oxidation and NO reduction reactions under the simulated exhaust conditions tested. Moreover, Pt-substituted TWCs exhibited significant stability upon hydrothermal aging at 1,050 o C. The results show that after aging the Pt-substituted catalyst retained higher N2 selectivity than the Pd-based TWC. Over Pd-based TWCs, N2 selectivity drastically dropped from 70-80% to 15-35% after aging, while Pt-substituted TWCs N2 selectivity dropped from 80- 100% to only 60-80%. The key finding from this study is that Pt incorporation in a Pd/Rh TWC improves the emission control from gasoline vehicles in terms of both CO and HC oxidation and NOx reduction

References

1. T. P. Kobylinski and B. W. Taylor, J. Catal., 33, 376 (1974).
2. A. Winkler, P. Dimopoulos, R. Hauert, C. Bach and M. Aguirre,Appl. Catal. B, 84, 162 (2008).
3. R. Prasad and P. Singh, Catal. Rev., 54, 224 (2012).
4. M. Salaün, A. Kouakou, S. Da Costa and P. Da Costa, Appl. Catal.B, 88, 386 (2009).
5. M. Haneda, K. Shinoda, A. Nagane, O. Houshito, H. Takagi, Y.Nakahara, K. Hiroe, T. Fujitani and H. Hamada, J. Catal., 259, 223 (2008).
6. P. Nevalainen, N. M. Kinnunen, A. Kirveslahti, K. Kallinen, T.
Maunula, M. Keenan and M. Suvanto, Appl. Catal. A, 552, 30 (2018).
7. A. R. Ravishankara, J. S. Daniel and R. W. Portmann, Science, 326,123 (2009).
8. J. Gao, H. Chen, Y. Liu, J. Laurikko, Y. Li, T. Li and R. Tu, Sci. Total Environ., 801, 149789 (2021).
9. M. Takei, H. Matsuda, Y. Itaya, S. Deguchi, K. Nakano, K. Nagahashi, M. Yoshino, J. Shibata and M. Hasatani, Fuel, 77, 1027 (1998).
10. M. Skoglundh and E. Fridell, Top. Catal., 28, 79 (2004).
11. R. Tu, J. Xu, A. Wang, Z. Zhai and M. Hatzopoulou, Sci. Total Environ., 760, 143402 (2021).
12. G. Sathish Sharma, M. Sugavaneswaran and R. Prakash, Fuel, 309,122146 (2022).
13. I. Mejía-Centeno and G. A. Fuentes, Chem. Eng. Commun., 196,1140 (2009).
14. N. W. Cant, D. E. Angove and D. C. Chambers, Appl. Catal. B, 17,63 (1998).
15. I. Heo, J. W. Choung, P. S. Kim, I.-S. Nam, Y. I. Song, C. B. In and G. K. Yeo, Appl. Catal. B, 92, 114 (2009).
16. J. Wang, H. Chen, Z. Hu, M. Yao and Y. Li, Catal. Rev., 57, 79 (2014).
17. M. Shelef and G. W. Graham, Catal. Rev., 36, 433 (1994).
18. N. R. Collins and M. V. Twigg, Top. Catal., 42, 323 (2007).
19. M. Shelef and R. W. McCabe, Catal. Today, 62, 35 (2006).
20. W.-J. Li and M.-Y. Wey, Sci. Total Environ., 707, 136137 (2020).
21. A. A. Vedyagin, M. S. Gavrilov, A. M. Volodin, V. O. Stoyanovskii,
E. M. Slavinskaya, I. V. Mishakov and Y. V. Shubin, Top. Catal., 56,1008 (2013).
22. V. Papadakis, C. Pliangos, I. Yentekakis, X. Verykios and C. Vayenas, Catal. Today, 29, 71 (1996).
23. E. Vasile, A. Ciocanea, V. Ionescu, I. Lepadatu, C. Diac and S. N.Stamatin, Ultrason. Sonochem., 72, 105404 (2021).
24. B. Engler, E. Lox, K. Ostgathe, T. Ohata, K. Tsuchitani, S. Ichihara H. Onoda, G. Garr and D. Psaras, SAE Technical Paper, 940928 (1994).
25. J. Cooper and J. Beecham, Plat. Met. Rev., 57, 281 (2013).
26. J. Jeong, B. Choi, M. Jung and G. Son, SAE Technical Paper, 2003-01-1873 (2003).
27. J. G. Nunan, W. B. Williamson, H. J. Robota and M. G. Henk, SAE Transactions, 104, 310 (1995).
28. J. R. González-Velasco, J. A. Botas, J. A. González-Marcos and M. A.Gutiérrez-Ortiz, Appl. Catal. B, 12, 61 (1997).
29. P. H. Ho, J. Shao, D. Yao, R. F. Ilmasani, M. A. Salam, D. Creaser and L. Olsson, J. Environ. Chem. Eng., 10, 108217 (2022).
30. J. Kim, Y. Kim, M. H. Wiebenga, S. H. Oh and D. H. Kim, Appl.Catal. B, 251, 283 (2019).
31. S. B. Kang, M. Hazlett, V. Balakotaiah, C. Kalamaras and W. Epling,
Appl. Catal. B, 223, 67 (2018).32. M. J. Hazlett, M. Moses-Debusk, J. E. Parks, L. F. Allard and W. S.Epling, Appl. Catal. B, 202, 404 (2017).
33. F. Grasset, P. Alphonse, C. Labrugère, J. Darriet and A. Rousset,Mater. Res. Bull., 34, 2101 (1999).
34. T. Montanari, R. Matarrese, N. Artioli and G. Busca, Appl. Catal.B, 105, 15 (2011).
35. K. Taylor, J. Catal., 63, 53 (1980).
36. Z. Hu, Chem. Commun., 4, 879 (1996).
37. Z. Hu, F. M. Allen, C. Z. Wan, R. M. Heck, J. J. Steger, R. E. Lakis and C. E. Lyman, J. Catal., 174, 13 (1998).
38. X. Liu, J. Chen, G. Zhang, Y. Wu, P. Shen, L. Zhong and Y. Chen, J.Environ. Chem. Eng., 9, 105570 (2021).
39. P. Granger, C. Dujardin, J. F. Paul and G. Leclercq, J. Mol. Catal. A Chem., 228, 241 (2005).
40. B. I. Whittington, C. J. Jiang and D. L. Trimm, Catal. Today, 26, 41 (1995).
41. N. Le Phuc, X. Courtois, F. Can, S. Royer, P. Marecot and D. Duprez,
Appl. Catal. B, 102, 362 (2011).42. Y. Liu, H. Wang, N. Li, J. Tan and D. Chen, Sci. Total Environ.,795, 148926 (2021).
43. J. Schütz, H. Störmer, P. Lott and O. Deutschmann, Catalysts, 11,300 (2021).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로