Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received December 10, 2022
Revised February 8, 2023
Accepted February 9, 2023
- Acknowledgements
- This work is supported by Hyundai Motor Company, National Research Foundation of Korea (NRF) Grant funded by the Korean government (MSIT) (No. 2021R1C1C1005404 and No. 2021R1 A5A1028138), GIST Research Institute (GRI) grant funded by the GIST in 2023.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Pt substitution in Pd/Rh three-way catalyst for improved emission control
Abstract
Gasoline engine vehicle emissions, such as nitrogen oxides (NOx), CO and hydrocarbons (HCs), are a
major source of air pollution, and require improved emission control systems. By-product NH3 and N2O emissions,
which come from low N2 selectivity in the emission control system, are also a major concern. The current study has
comprehensively investigated the impact of the Pt-substitution in commercial Pd/Rh-based three-way catalyst (TWC)
formulations with respect to catalytic performance. TWC performance was systematically evaluated with respect to the
warm-up catalytic converter (WCC) and the under-floor catalytic converter (UCC). This included evaluating TWC
activity under realistic simulated exhaust conditions including fuel-rich, stoichiometric and fuel-lean (0.991.01). Ptsubstituted TWCs outperformed Pd-based counterparts, regardless of the converter type (WCC or UCC), in CO, C3H6
and C3H8 oxidation and NO reduction reactions under the simulated exhaust conditions tested. Moreover, Pt-substituted TWCs exhibited significant stability upon hydrothermal aging at 1,050 o
C. The results show that after aging the
Pt-substituted catalyst retained higher N2 selectivity than the Pd-based TWC. Over Pd-based TWCs, N2 selectivity
drastically dropped from 70-80% to 15-35% after aging, while Pt-substituted TWCs N2 selectivity dropped from 80-
100% to only 60-80%. The key finding from this study is that Pt incorporation in a Pd/Rh TWC improves the emission control from gasoline vehicles in terms of both CO and HC oxidation and NOx reduction
Keywords
References
2. A. Winkler, P. Dimopoulos, R. Hauert, C. Bach and M. Aguirre,Appl. Catal. B, 84, 162 (2008).
3. R. Prasad and P. Singh, Catal. Rev., 54, 224 (2012).
4. M. Salaün, A. Kouakou, S. Da Costa and P. Da Costa, Appl. Catal.B, 88, 386 (2009).
5. M. Haneda, K. Shinoda, A. Nagane, O. Houshito, H. Takagi, Y.Nakahara, K. Hiroe, T. Fujitani and H. Hamada, J. Catal., 259, 223 (2008).
6. P. Nevalainen, N. M. Kinnunen, A. Kirveslahti, K. Kallinen, T.
Maunula, M. Keenan and M. Suvanto, Appl. Catal. A, 552, 30 (2018).
7. A. R. Ravishankara, J. S. Daniel and R. W. Portmann, Science, 326,123 (2009).
8. J. Gao, H. Chen, Y. Liu, J. Laurikko, Y. Li, T. Li and R. Tu, Sci. Total Environ., 801, 149789 (2021).
9. M. Takei, H. Matsuda, Y. Itaya, S. Deguchi, K. Nakano, K. Nagahashi, M. Yoshino, J. Shibata and M. Hasatani, Fuel, 77, 1027 (1998).
10. M. Skoglundh and E. Fridell, Top. Catal., 28, 79 (2004).
11. R. Tu, J. Xu, A. Wang, Z. Zhai and M. Hatzopoulou, Sci. Total Environ., 760, 143402 (2021).
12. G. Sathish Sharma, M. Sugavaneswaran and R. Prakash, Fuel, 309,122146 (2022).
13. I. Mejía-Centeno and G. A. Fuentes, Chem. Eng. Commun., 196,1140 (2009).
14. N. W. Cant, D. E. Angove and D. C. Chambers, Appl. Catal. B, 17,63 (1998).
15. I. Heo, J. W. Choung, P. S. Kim, I.-S. Nam, Y. I. Song, C. B. In and G. K. Yeo, Appl. Catal. B, 92, 114 (2009).
16. J. Wang, H. Chen, Z. Hu, M. Yao and Y. Li, Catal. Rev., 57, 79 (2014).
17. M. Shelef and G. W. Graham, Catal. Rev., 36, 433 (1994).
18. N. R. Collins and M. V. Twigg, Top. Catal., 42, 323 (2007).
19. M. Shelef and R. W. McCabe, Catal. Today, 62, 35 (2006).
20. W.-J. Li and M.-Y. Wey, Sci. Total Environ., 707, 136137 (2020).
21. A. A. Vedyagin, M. S. Gavrilov, A. M. Volodin, V. O. Stoyanovskii,
E. M. Slavinskaya, I. V. Mishakov and Y. V. Shubin, Top. Catal., 56,1008 (2013).
22. V. Papadakis, C. Pliangos, I. Yentekakis, X. Verykios and C. Vayenas, Catal. Today, 29, 71 (1996).
23. E. Vasile, A. Ciocanea, V. Ionescu, I. Lepadatu, C. Diac and S. N.Stamatin, Ultrason. Sonochem., 72, 105404 (2021).
24. B. Engler, E. Lox, K. Ostgathe, T. Ohata, K. Tsuchitani, S. Ichihara H. Onoda, G. Garr and D. Psaras, SAE Technical Paper, 940928 (1994).
25. J. Cooper and J. Beecham, Plat. Met. Rev., 57, 281 (2013).
26. J. Jeong, B. Choi, M. Jung and G. Son, SAE Technical Paper, 2003-01-1873 (2003).
27. J. G. Nunan, W. B. Williamson, H. J. Robota and M. G. Henk, SAE Transactions, 104, 310 (1995).
28. J. R. González-Velasco, J. A. Botas, J. A. González-Marcos and M. A.Gutiérrez-Ortiz, Appl. Catal. B, 12, 61 (1997).
29. P. H. Ho, J. Shao, D. Yao, R. F. Ilmasani, M. A. Salam, D. Creaser and L. Olsson, J. Environ. Chem. Eng., 10, 108217 (2022).
30. J. Kim, Y. Kim, M. H. Wiebenga, S. H. Oh and D. H. Kim, Appl.Catal. B, 251, 283 (2019).
31. S. B. Kang, M. Hazlett, V. Balakotaiah, C. Kalamaras and W. Epling,
Appl. Catal. B, 223, 67 (2018).32. M. J. Hazlett, M. Moses-Debusk, J. E. Parks, L. F. Allard and W. S.Epling, Appl. Catal. B, 202, 404 (2017).
33. F. Grasset, P. Alphonse, C. Labrugère, J. Darriet and A. Rousset,Mater. Res. Bull., 34, 2101 (1999).
34. T. Montanari, R. Matarrese, N. Artioli and G. Busca, Appl. Catal.B, 105, 15 (2011).
35. K. Taylor, J. Catal., 63, 53 (1980).
36. Z. Hu, Chem. Commun., 4, 879 (1996).
37. Z. Hu, F. M. Allen, C. Z. Wan, R. M. Heck, J. J. Steger, R. E. Lakis and C. E. Lyman, J. Catal., 174, 13 (1998).
38. X. Liu, J. Chen, G. Zhang, Y. Wu, P. Shen, L. Zhong and Y. Chen, J.Environ. Chem. Eng., 9, 105570 (2021).
39. P. Granger, C. Dujardin, J. F. Paul and G. Leclercq, J. Mol. Catal. A Chem., 228, 241 (2005).
40. B. I. Whittington, C. J. Jiang and D. L. Trimm, Catal. Today, 26, 41 (1995).
41. N. Le Phuc, X. Courtois, F. Can, S. Royer, P. Marecot and D. Duprez,
Appl. Catal. B, 102, 362 (2011).42. Y. Liu, H. Wang, N. Li, J. Tan and D. Chen, Sci. Total Environ.,795, 148926 (2021).
43. J. Schütz, H. Störmer, P. Lott and O. Deutschmann, Catalysts, 11,300 (2021).