ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received October 12, 2022
Revised January 6, 2023
Accepted January 31, 2023
Acknowledgements
This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIT) [NRF-2016R1A5A1009592]. The Institute of Engineering Research at Seoul National University provided research facilities for this work.
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Model-based fault detecting strategy of urea-selective catalytic reduction (SCR) for diesel vehicles

School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Korea
jongmin@snu.ac.kr
Korean Journal of Chemical Engineering, July 2023, 40(7), 1616-1622(7), 10.1007/s11814-023-1426-y
downloadDownload PDF

Abstract

Selective catalytic reduction (SCR) is diesel aftertreatment using a reduction agent to reduce nitrogen oxides. Diesel engine regulations are being tightened; therefore, the diesel aftertreatment system should be operated efficiently. In the urea-SCR system, there is a possibility of various faults, e.g., catalyst deactivation by sulfur or hydrothermal aging and fault in urea injection system. These faults interfere with normal system operation and result in increase of NOx concentration at the tailpipe. To prevent this situation, it is necessary to detect system faults. In this study, a first-principle model for SCR system is presented based on mass and energy balance equations. Using the onedimensional urea-SCR model, this research introduces a model-based fault detecting strategy for SCR system. The residuals are calculated as the difference between the model calculation and the actual catalyst system measurement with the system faults. The results of this research are used in fault diagnosis and fault tolerant control studies to meet diesel vehicle nitrogen oxide regulations even in the presence of catalyst faults.

References

1. E. Furuholt, Resour., Conserv. Recycl., 14, 251 (1995).
2. H. L. MacLean and L. B. Lave, Environ. Sci. Technol., 37, 5445 (2003).
3. A. C. Lloyd and T. A. Cackette, J. Air Waste Manage. Assoc., 51, 809 (2001).
4. A. Russell and W. S. Epling, Catal. Rev., 53, 337 (2011).
5. S. Yang, C. Deng, Y. Gao and Y. He, Adv. Mech. Eng., 8,1687814016637328 (2016).
6. K. Tsuneyoshi and K. Yamamoto, Energy, 48, 492 (2012).
7. Z. Mera, N. Fonseca, J. N. López and J. Casanova, Appl. Energy,242, 1074 (2019).
8. T. Grigoratos, G. Fontaras, B. Giechaskiel and N. Zacharof, Atmos.Environ., 201, 348 (2019).
9. G. Busca, L. Lietti, G. Ramis and F. Berti, Appl. Catal., B, 18, 1 (1998).
10. B. S. Kim, H. Jeong, J. Bae, P. S. Kim, C. H. Kim and H. Lee, Appl.Catal., B, 270, 118871 (2020).
11. M. Shen, Z. Wang, X. Li, J. Wang, J. Wang, C. Wang and J. Wang,Korean J. Chem. Eng., 36, 1249 (2019).
12. D. W. Lee, S. J. Song and K. Y. Lee, Korean J. Chem. Eng., 27, 452 (2010).
13. J. H. Kwak, R. G. Tonkyn, D. H. Kim, J. Szanyi and C. H. Peden, J.Catal., 275, 187 (2010).
14. O. Kröcher, M. Devadas, M. Elsener, A. Wokaun, N. Söger, M.Pfeifer, Y. Demel and L. Mussmann, Appl. Catal., B, 66, 208 (2006).
15. Y. Kim, T. Park, C. Jung, C. H. Kim, Y. W. Kim and J. M. Lee, IEEE Trans. Control Syst. Technol., 27, 2305 (2018).
16. S. D. Yim, S. J. Kim, J. H. Baik, I. S. Nam, Y. S. Mok, J. H. Lee, B. K.Cho and S. H. Oh, Ind. Eng. Chem. Res., 43, 4856 (2004).
17. H. Sjövall, R. J. Blint, A. Gopinath and L. Olsson, Ind. Eng. Chem.Res., 49, 39 (2010).
18. M. Koebel, G. Madia and M. Elsener, Catal. Today, 73, 239 (2002).
19. M. Devadas, O. Kröcher, M. Elsener, A. Wokaun, N. Söger, M.Pfeifer, Y. Demel and L. Mussmann, Appl. Catal., B, 67, 187 (2006).
20. H. JeffevS and A. Douglas, SAE, 942057 (1994).
21. Y. Y. Wang, Y. Sun, C. F. Chang and Y. Hu, IEEE Trans. Veh. Technol., 65, 4645 (2015).
22. K. Wijayanti, S. Andonova, A. Kumar, J. Li, K. Kamasamudram,N. W. Currier, A. Yezerets and L. Olsson, Appl. Catal., B, 166, 568 (2015).
23. J.H. Kwak, D. Tran, S.D. Burton, J. Szanyi, J.H. Lee and C.H. Peden,J. Catal., 287, 203 (2012).
24. D. Depcik, D. Assanis and K. Bevan, Int. J. Engine Res., 9, 57 (2008).
25. R. B. Bird, Appl. Mech. Rev., 55, R1 (2002).
26. M. Bhattacharya, M. P. Harold and V. Balakotaiah, AIChE J., 50,2939 (2004).
27. J. Welty, G. L. Rorrer and D. G. Foster, John Wiley & Sons (2020).
28. S. Lim, B. Lee, S. Choi, Y. Kim and J. M. Lee, Ind. Eng. Chem. Res.,61, 13523 (2022).
29. J. H. Lee and N. L. Ricker, Ind. Eng. Chem. Res., 33, 1530 (1994).
30. M. F. Hsieh and J. Wang, IEEE Trans. Control Syst. Technol., 19.6 (2011).
31. H. Lee, C. Kim, D. H. Jeong and J. M. Lee, Korean J. Chem. Eng.,38, 2406 (2021).
32. M. Madakyaru, F. Harrou and Y. Sun, Process Saf. Environ. Prot.,107, 22 (2017).
33. S. Simani, C. Fantuzzi and R. J. Patton, Springer, London, 19 (2003).
34. F. Kimmich, A. Schwarte and R. Isermann, Control Eng. Pract., 13,189 (2005).
35. R. Isermann, Annu. Rev. Control, 29.1 (2005).
36. J. Gertler, Control Eng. Pract., 5.5 (1997)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로