Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 12, 2022
Revised January 6, 2023
Accepted January 31, 2023
- Acknowledgements
- This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIT) [NRF-2016R1A5A1009592]. The Institute of Engineering Research at Seoul National University provided research facilities for this work.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Model-based fault detecting strategy of urea-selective catalytic reduction (SCR) for diesel vehicles
Abstract
Selective catalytic reduction (SCR) is diesel aftertreatment using a reduction agent to reduce nitrogen
oxides. Diesel engine regulations are being tightened; therefore, the diesel aftertreatment system should be operated
efficiently. In the urea-SCR system, there is a possibility of various faults, e.g., catalyst deactivation by sulfur or hydrothermal aging and fault in urea injection system. These faults interfere with normal system operation and result in
increase of NOx concentration at the tailpipe. To prevent this situation, it is necessary to detect system faults. In this
study, a first-principle model for SCR system is presented based on mass and energy balance equations. Using the onedimensional urea-SCR model, this research introduces a model-based fault detecting strategy for SCR system. The
residuals are calculated as the difference between the model calculation and the actual catalyst system measurement
with the system faults. The results of this research are used in fault diagnosis and fault tolerant control studies to meet
diesel vehicle nitrogen oxide regulations even in the presence of catalyst faults.
Keywords
References
2. H. L. MacLean and L. B. Lave, Environ. Sci. Technol., 37, 5445 (2003).
3. A. C. Lloyd and T. A. Cackette, J. Air Waste Manage. Assoc., 51, 809 (2001).
4. A. Russell and W. S. Epling, Catal. Rev., 53, 337 (2011).
5. S. Yang, C. Deng, Y. Gao and Y. He, Adv. Mech. Eng., 8,1687814016637328 (2016).
6. K. Tsuneyoshi and K. Yamamoto, Energy, 48, 492 (2012).
7. Z. Mera, N. Fonseca, J. N. López and J. Casanova, Appl. Energy,242, 1074 (2019).
8. T. Grigoratos, G. Fontaras, B. Giechaskiel and N. Zacharof, Atmos.Environ., 201, 348 (2019).
9. G. Busca, L. Lietti, G. Ramis and F. Berti, Appl. Catal., B, 18, 1 (1998).
10. B. S. Kim, H. Jeong, J. Bae, P. S. Kim, C. H. Kim and H. Lee, Appl.Catal., B, 270, 118871 (2020).
11. M. Shen, Z. Wang, X. Li, J. Wang, J. Wang, C. Wang and J. Wang,Korean J. Chem. Eng., 36, 1249 (2019).
12. D. W. Lee, S. J. Song and K. Y. Lee, Korean J. Chem. Eng., 27, 452 (2010).
13. J. H. Kwak, R. G. Tonkyn, D. H. Kim, J. Szanyi and C. H. Peden, J.Catal., 275, 187 (2010).
14. O. Kröcher, M. Devadas, M. Elsener, A. Wokaun, N. Söger, M.Pfeifer, Y. Demel and L. Mussmann, Appl. Catal., B, 66, 208 (2006).
15. Y. Kim, T. Park, C. Jung, C. H. Kim, Y. W. Kim and J. M. Lee, IEEE Trans. Control Syst. Technol., 27, 2305 (2018).
16. S. D. Yim, S. J. Kim, J. H. Baik, I. S. Nam, Y. S. Mok, J. H. Lee, B. K.Cho and S. H. Oh, Ind. Eng. Chem. Res., 43, 4856 (2004).
17. H. Sjövall, R. J. Blint, A. Gopinath and L. Olsson, Ind. Eng. Chem.Res., 49, 39 (2010).
18. M. Koebel, G. Madia and M. Elsener, Catal. Today, 73, 239 (2002).
19. M. Devadas, O. Kröcher, M. Elsener, A. Wokaun, N. Söger, M.Pfeifer, Y. Demel and L. Mussmann, Appl. Catal., B, 67, 187 (2006).
20. H. JeffevS and A. Douglas, SAE, 942057 (1994).
21. Y. Y. Wang, Y. Sun, C. F. Chang and Y. Hu, IEEE Trans. Veh. Technol., 65, 4645 (2015).
22. K. Wijayanti, S. Andonova, A. Kumar, J. Li, K. Kamasamudram,N. W. Currier, A. Yezerets and L. Olsson, Appl. Catal., B, 166, 568 (2015).
23. J.H. Kwak, D. Tran, S.D. Burton, J. Szanyi, J.H. Lee and C.H. Peden,J. Catal., 287, 203 (2012).
24. D. Depcik, D. Assanis and K. Bevan, Int. J. Engine Res., 9, 57 (2008).
25. R. B. Bird, Appl. Mech. Rev., 55, R1 (2002).
26. M. Bhattacharya, M. P. Harold and V. Balakotaiah, AIChE J., 50,2939 (2004).
27. J. Welty, G. L. Rorrer and D. G. Foster, John Wiley & Sons (2020).
28. S. Lim, B. Lee, S. Choi, Y. Kim and J. M. Lee, Ind. Eng. Chem. Res.,61, 13523 (2022).
29. J. H. Lee and N. L. Ricker, Ind. Eng. Chem. Res., 33, 1530 (1994).
30. M. F. Hsieh and J. Wang, IEEE Trans. Control Syst. Technol., 19.6 (2011).
31. H. Lee, C. Kim, D. H. Jeong and J. M. Lee, Korean J. Chem. Eng.,38, 2406 (2021).
32. M. Madakyaru, F. Harrou and Y. Sun, Process Saf. Environ. Prot.,107, 22 (2017).
33. S. Simani, C. Fantuzzi and R. J. Patton, Springer, London, 19 (2003).
34. F. Kimmich, A. Schwarte and R. Isermann, Control Eng. Pract., 13,189 (2005).
35. R. Isermann, Annu. Rev. Control, 29.1 (2005).
36. J. Gertler, Control Eng. Pract., 5.5 (1997)