ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received September 9, 2022
Revised December 29, 2022
Accepted January 31, 2023
Acknowledgements
This work is supported by the National Natural Science Foundation of China (No. 51779025), Natural Science Foundation of Liaoning Province (No. 2020-HYLH-38), and Science and Technology Innovation Foundation of Dalian, China (2021JJ11CG004).
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Simulation of the purging process of randomly distributed droplets in a gas diffusion layer using lattice Boltzmann method

Marine Engineering College, Dalian Maritime University, Dalian, 116000, China
ljddmu@dlmu.edu.cn, shenqiuwan@dlmu.edu.cn
Korean Journal of Chemical Engineering, July 2023, 40(7), 1623-1632(10), 10.1007/s11814-023-1427-x
downloadDownload PDF

Abstract

Droplet purging in the gas diffusion layer (GDL) is the key to improving the performance of proton exchange membrane fuel cells (PEMFCs). Lattice Boltzmann method (LBM) is used to study the dynamic behavior of multiple droplets randomly distributed in the GDL under air purging. The GDL is randomly reconstructed. The effects of rib width, initial water content, contact angle and air velocity are studied. By analyzing the dynamic distribution of droplets in the GDL and the change of the remaining water content with time, it is found that the droplets are only a small amount under the rib and accumulated mostly on both sides of the GDL at stabilization, which is caused by the large velocity under the rib. The residual water content in the GDL increases with the increase of the initial water content, and decreases with the increase of the rib width, contact angle and air velocity. However, when the rib to channel width ratio exceeds 1, the improvement of purging effect is not obvious, the purging time increases significantly, and the increase of air velocity does not help much to remove the droplets accumulated on both sides of the GDL.

References

1. J. D. Liao, G. G. Yang, S. A. Li, Q. W. Shen, Z. H. Jiang, H. Wang and Z. Li, J. Power Sources, 529, 231245 (2022).
2. H. Wang, G. G. Yang, S. A. Li, Q. W. Shen, J. D. Liao, Z. H. Jiang,M. Espinoza-Andaluz, F. M. Su and X. X. Pan, Int. J. Hydrogen Energy, 46(42), 22107 (2021).
3. Z. H. Jiang, G. G. Yang, S. A. Li, Q. W. Shen, J. D. Liao, H. Wang,M. Espinoza-Andaluz, R. M. Ying and X. X. Pan, Comput. Mater.Sci., 190, 110286 (2021).
4. T. Wilberforce, A. Alaswad, A. Palumbo, M. Dassisti and A. G.Olabi, Int. J. Hydrogen Energy, 41(37), 16509 (2016).
5. T. Wilberforce, Z. El-Hassan, F. N. Khatib, A. Al Makky, A. Baroutaji,J. G. Carton and A. G. Olabi, Int. J. Hydrogen Energy, 42(40), 25695(2017).
6. K. Jiao and X. Li, Prog. Energy Combust. Sci., 37(3), 221 (2011).
7. O. S. Ijaodola, Z. El-Hassan, E. Ogungbemi, F. N. Khatib, T. Wilberforce, J. Thompson and A. G. Olabi, Energy, 179, 246 (2019).
8. Q. Yan, H. Toghiani and H. Causey, J. Power Sources, 161(1), 492(2006).
9. Q. Zhang, R. Lin, L. Técher and X. Cui, Energy, 115, 550 (2016).
10. B. Laoun, H. A. Kasat, R. Ahmad and A. M. Kannan, Energy, 151,689 (2018).
11. X. Xie, G. Zhang, J. Zhou and K. Jiao, Int. J. Hydrogen Energy, 42(17),12521 (2017).
12. J. I. S. Cho, T. P. Neville, P. Trogadas, Q. Meyer, Y. Wu, R. Ziesche,P. Boillat, M. Cochet, V. Manzi-Orezzoli, P. Shearing, D. J. L. Brett and M. O. Coppens, Energy, 170, 14 (2019).
13. J. Lee, J. Hinebaugh and A. Bazylak, J. Power Sources, 227, 123(2013).
14. Y. F. Xu, D. K. Qiu, P. Y. Yi, S. H. Lan and L. F. Peng, Int. J. Hydrogen Energy, 44(26), 13777 (2019).
15. X. Shangguan, Y. Li, Y. Z. Qin, S. B. Cao, J. F. Zhang and Y. Yin,Electrochim. Acta, 371, 137814 (2021).
16. L. Chen, H. B. Luan, Y. L. Feng, C. X. Song, Y. L. He and W. Q.Tao, Int. J. Heat Mass Tran., 55, 3834 (2012).
17. Y. Ira, Y. Bakhshan and J. Khorshidimalahmadi, Int. J. Hydrogen Energy, 46(33), 17397 (2021).
18. D. H. Jeon and H. Kim, J. Power Sources, 294, 393 (2015).
19. D. H. Jeon, J. Power Sources, 423, 280 (2019).
20. D. H. Jeon, J. Energy Inst., 92(3), 755 (2019).
21. K. N. Kim, J. H. Kang, S. G. Lee, J. H. Nam and C. J. Kim, J. Power Sources, 278, 703 (2015).
22. M. Yang, A. Du, J. Liu and S. Xu, World Electric Vehicle J., 12(3),133 (2021).
23. P. Xu and S. C. Xu, Fuel Cells, 17(6), 794 (2017).
24. A. H. Kakaee, G. R. Molaeimanesh and M. E. Garmaroudi, Int. J.Hydrogen Energy, 43(32), 15481 (2018).
25. G. R. Molaeimanesh and M. H. Akbari, Korean J. Chem. Eng.,31(4), 598 (2014).
26. G. R. Molaeimanesh and M. H. Akbari, Int. J. Hydrogen Energy,39(16), 8401 (2014).
27. G. R. Molaeimanesh and M. H. Akbari, Int. J. Hydrogen Energy,41(33), 14872 (2016).
28. G. R. Molaeimanesh, M. H. Shojaeefard and M. R. Moqaddari,Korean J. Chem. Eng., 36(1), 136 (2019).
29. Z. Q. Niu, K. Jiao, Y. Wang, Q. Du and Y. Yin, Int. J. Energy Res.,42(2), 802 (2018).
30. L. Chen, H. B. Luan, Y. L. He and W. Q. Tao, Int. J. Therm. Sci., 51,132 (2012).
31. J. H. Nam and M. Kaviany, Int. J. Heat Mass Transf., 46, 4595 (2003).
32. A. Turhan, S. Kim, M. Hatzell and M. M. Mench, Electrochim.Acta, 55, 2734 (2009).
33. L. Chen, H. B. Luan, Y. L. He and W. Q. Tao, Russ. J. Electrochem.,48(7), 712 (2012).
34. P. P. Mukherjee, C. Y. Wang and Q. Kang, Electrochim. Acta, 54(27),6861 (2009).
35. H. Wang, G. Yang, S. Li, Q. Shen, F. Su, Z. Jiang, J. Liao and X.Pan, Energy Fuels, 36(15), 8422 (2022).
36. Z. H. Chai, Z. L. Guo, L. Zheng and B. C. Shi, J. Appl. Phys., 104(1),014902 (2008).
37. C. Gao, R. N. Xu and P. X. Jiang, Int. J. Numer. Methods Heat Fluid Flow, 25(8), 1957 (2015).
38. C. M. Freeman, G. J. Moridis and T. A. Blasingame, Transp. Porous Media, 90(1), 253 (2011).
39. H. B. Huang, L. Wang and X. Y. Lu, Comput. Math. Appl., 61(12),3606 (2011).
40. H. B. Huang, Z. T. Li, S. S. Liu and X. Y. Lu, Int. J. Numer. Methods Fluids, 61(3), 341 (2009).
41. Q. Li, K. H. Luo, Q. J. Kang, Y. L. He, Q. Chen and Q. Liu, Prog.Energy Combust. Sci., 52, 62 (2016).
42. A. K. Gunstensen, D. H. Rothman, S. Zaleski and G. Zanetti, Phys.Rev. A, 43(8), 4320 (1991).
43. X. Shan and H. Chen, Phys. Rev. E, 47(3), 1815 (1993).
44. M. R. Swift, W. R. Osborn and J. M. Yeomans, Phys. Rev. Lett.,75(5), 830 (1995).
45. J. Park and X. Li, J. Power Sources, 178, 248 (2008).
46. L. Chen, H. B. Luan and W. Q. Tao, Front. Heat Mass Transf., 1(2) 023002 (2010).
47. J. D. Liao, G. G. Yang, Q. W. Shen, S. A. Li, Z. H. Jiang, H. Wang,
Z. H. Sheng, G. L. Zhang and H. P. Zhang, Energy Fuels, 35(20),16799 (2021).
48. H. B Huang, M. Sukop and X. Y. Lu, Multiphase lattice Boltzmann methods: Theory and application, Wiley, New York, 79 (2015).
49. T. V. Nguyen, J. Electrochem. Soc., 143(5), 103 (1996).
50. J. D. Liao, G. G. Yang, S. A. Li, Q. W. Shen, Z. H. Jiang, H. Wang,L. Y. Xu, M. Espinoza-Andaluz and X. X. Pan, Energy Fuels, 35(3),2654 (2021).
51. J. T. Gostick, M. W. Fowler, M. D. Pritzker, M. A. Ioannidis and L. M. Behra, J. Power Sources, 162, 228 (2006).
52. J. Ding, Y. T. Mu, S. Zhai and W. Q. Tao, Int. J. Heat Mass Transf.,103, 744 (2016).
53. Z. Shi, X. Wang and L. Guessous, J. Fuel Cell Sci. Technol., 7(2),021012 (2010).
54. Q. S. Zou and X. Y. He, Phys. Fluids, 9, 1591 (1997).
55. J. P. Owejan, J. J. Gagliardo, S. R. Falta and T. A. Trabold, J. Electrochem. Soc., 156(12), B1475 (2009).
56. K. T. Cho and M. M. Mench, Int. J. Hydrog. Energy, 35(22), 12329 (2010).
57. P. Xu and S. Xu, Fuel Cells, 17(6), 794 (2017)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로