Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received September 9, 2022
Revised December 29, 2022
Accepted January 31, 2023
- Acknowledgements
- This work is supported by the National Natural Science Foundation of China (No. 51779025), Natural Science Foundation of Liaoning Province (No. 2020-HYLH-38), and Science and Technology Innovation Foundation of Dalian, China (2021JJ11CG004).
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Simulation of the purging process of randomly distributed droplets in a gas diffusion layer using lattice Boltzmann method
Abstract
Droplet purging in the gas diffusion layer (GDL) is the key to improving the performance of proton
exchange membrane fuel cells (PEMFCs). Lattice Boltzmann method (LBM) is used to study the dynamic behavior of
multiple droplets randomly distributed in the GDL under air purging. The GDL is randomly reconstructed. The effects
of rib width, initial water content, contact angle and air velocity are studied. By analyzing the dynamic distribution of
droplets in the GDL and the change of the remaining water content with time, it is found that the droplets are only a
small amount under the rib and accumulated mostly on both sides of the GDL at stabilization, which is caused by the
large velocity under the rib. The residual water content in the GDL increases with the increase of the initial water content, and decreases with the increase of the rib width, contact angle and air velocity. However, when the rib to channel
width ratio exceeds 1, the improvement of purging effect is not obvious, the purging time increases significantly, and
the increase of air velocity does not help much to remove the droplets accumulated on both sides of the GDL.
Keywords
References
2. H. Wang, G. G. Yang, S. A. Li, Q. W. Shen, J. D. Liao, Z. H. Jiang,M. Espinoza-Andaluz, F. M. Su and X. X. Pan, Int. J. Hydrogen Energy, 46(42), 22107 (2021).
3. Z. H. Jiang, G. G. Yang, S. A. Li, Q. W. Shen, J. D. Liao, H. Wang,M. Espinoza-Andaluz, R. M. Ying and X. X. Pan, Comput. Mater.Sci., 190, 110286 (2021).
4. T. Wilberforce, A. Alaswad, A. Palumbo, M. Dassisti and A. G.Olabi, Int. J. Hydrogen Energy, 41(37), 16509 (2016).
5. T. Wilberforce, Z. El-Hassan, F. N. Khatib, A. Al Makky, A. Baroutaji,J. G. Carton and A. G. Olabi, Int. J. Hydrogen Energy, 42(40), 25695(2017).
6. K. Jiao and X. Li, Prog. Energy Combust. Sci., 37(3), 221 (2011).
7. O. S. Ijaodola, Z. El-Hassan, E. Ogungbemi, F. N. Khatib, T. Wilberforce, J. Thompson and A. G. Olabi, Energy, 179, 246 (2019).
8. Q. Yan, H. Toghiani and H. Causey, J. Power Sources, 161(1), 492(2006).
9. Q. Zhang, R. Lin, L. Técher and X. Cui, Energy, 115, 550 (2016).
10. B. Laoun, H. A. Kasat, R. Ahmad and A. M. Kannan, Energy, 151,689 (2018).
11. X. Xie, G. Zhang, J. Zhou and K. Jiao, Int. J. Hydrogen Energy, 42(17),12521 (2017).
12. J. I. S. Cho, T. P. Neville, P. Trogadas, Q. Meyer, Y. Wu, R. Ziesche,P. Boillat, M. Cochet, V. Manzi-Orezzoli, P. Shearing, D. J. L. Brett and M. O. Coppens, Energy, 170, 14 (2019).
13. J. Lee, J. Hinebaugh and A. Bazylak, J. Power Sources, 227, 123(2013).
14. Y. F. Xu, D. K. Qiu, P. Y. Yi, S. H. Lan and L. F. Peng, Int. J. Hydrogen Energy, 44(26), 13777 (2019).
15. X. Shangguan, Y. Li, Y. Z. Qin, S. B. Cao, J. F. Zhang and Y. Yin,Electrochim. Acta, 371, 137814 (2021).
16. L. Chen, H. B. Luan, Y. L. Feng, C. X. Song, Y. L. He and W. Q.Tao, Int. J. Heat Mass Tran., 55, 3834 (2012).
17. Y. Ira, Y. Bakhshan and J. Khorshidimalahmadi, Int. J. Hydrogen Energy, 46(33), 17397 (2021).
18. D. H. Jeon and H. Kim, J. Power Sources, 294, 393 (2015).
19. D. H. Jeon, J. Power Sources, 423, 280 (2019).
20. D. H. Jeon, J. Energy Inst., 92(3), 755 (2019).
21. K. N. Kim, J. H. Kang, S. G. Lee, J. H. Nam and C. J. Kim, J. Power Sources, 278, 703 (2015).
22. M. Yang, A. Du, J. Liu and S. Xu, World Electric Vehicle J., 12(3),133 (2021).
23. P. Xu and S. C. Xu, Fuel Cells, 17(6), 794 (2017).
24. A. H. Kakaee, G. R. Molaeimanesh and M. E. Garmaroudi, Int. J.Hydrogen Energy, 43(32), 15481 (2018).
25. G. R. Molaeimanesh and M. H. Akbari, Korean J. Chem. Eng.,31(4), 598 (2014).
26. G. R. Molaeimanesh and M. H. Akbari, Int. J. Hydrogen Energy,39(16), 8401 (2014).
27. G. R. Molaeimanesh and M. H. Akbari, Int. J. Hydrogen Energy,41(33), 14872 (2016).
28. G. R. Molaeimanesh, M. H. Shojaeefard and M. R. Moqaddari,Korean J. Chem. Eng., 36(1), 136 (2019).
29. Z. Q. Niu, K. Jiao, Y. Wang, Q. Du and Y. Yin, Int. J. Energy Res.,42(2), 802 (2018).
30. L. Chen, H. B. Luan, Y. L. He and W. Q. Tao, Int. J. Therm. Sci., 51,132 (2012).
31. J. H. Nam and M. Kaviany, Int. J. Heat Mass Transf., 46, 4595 (2003).
32. A. Turhan, S. Kim, M. Hatzell and M. M. Mench, Electrochim.Acta, 55, 2734 (2009).
33. L. Chen, H. B. Luan, Y. L. He and W. Q. Tao, Russ. J. Electrochem.,48(7), 712 (2012).
34. P. P. Mukherjee, C. Y. Wang and Q. Kang, Electrochim. Acta, 54(27),6861 (2009).
35. H. Wang, G. Yang, S. Li, Q. Shen, F. Su, Z. Jiang, J. Liao and X.Pan, Energy Fuels, 36(15), 8422 (2022).
36. Z. H. Chai, Z. L. Guo, L. Zheng and B. C. Shi, J. Appl. Phys., 104(1),014902 (2008).
37. C. Gao, R. N. Xu and P. X. Jiang, Int. J. Numer. Methods Heat Fluid Flow, 25(8), 1957 (2015).
38. C. M. Freeman, G. J. Moridis and T. A. Blasingame, Transp. Porous Media, 90(1), 253 (2011).
39. H. B. Huang, L. Wang and X. Y. Lu, Comput. Math. Appl., 61(12),3606 (2011).
40. H. B. Huang, Z. T. Li, S. S. Liu and X. Y. Lu, Int. J. Numer. Methods Fluids, 61(3), 341 (2009).
41. Q. Li, K. H. Luo, Q. J. Kang, Y. L. He, Q. Chen and Q. Liu, Prog.Energy Combust. Sci., 52, 62 (2016).
42. A. K. Gunstensen, D. H. Rothman, S. Zaleski and G. Zanetti, Phys.Rev. A, 43(8), 4320 (1991).
43. X. Shan and H. Chen, Phys. Rev. E, 47(3), 1815 (1993).
44. M. R. Swift, W. R. Osborn and J. M. Yeomans, Phys. Rev. Lett.,75(5), 830 (1995).
45. J. Park and X. Li, J. Power Sources, 178, 248 (2008).
46. L. Chen, H. B. Luan and W. Q. Tao, Front. Heat Mass Transf., 1(2) 023002 (2010).
47. J. D. Liao, G. G. Yang, Q. W. Shen, S. A. Li, Z. H. Jiang, H. Wang,
Z. H. Sheng, G. L. Zhang and H. P. Zhang, Energy Fuels, 35(20),16799 (2021).
48. H. B Huang, M. Sukop and X. Y. Lu, Multiphase lattice Boltzmann methods: Theory and application, Wiley, New York, 79 (2015).
49. T. V. Nguyen, J. Electrochem. Soc., 143(5), 103 (1996).
50. J. D. Liao, G. G. Yang, S. A. Li, Q. W. Shen, Z. H. Jiang, H. Wang,L. Y. Xu, M. Espinoza-Andaluz and X. X. Pan, Energy Fuels, 35(3),2654 (2021).
51. J. T. Gostick, M. W. Fowler, M. D. Pritzker, M. A. Ioannidis and L. M. Behra, J. Power Sources, 162, 228 (2006).
52. J. Ding, Y. T. Mu, S. Zhai and W. Q. Tao, Int. J. Heat Mass Transf.,103, 744 (2016).
53. Z. Shi, X. Wang and L. Guessous, J. Fuel Cell Sci. Technol., 7(2),021012 (2010).
54. Q. S. Zou and X. Y. He, Phys. Fluids, 9, 1591 (1997).
55. J. P. Owejan, J. J. Gagliardo, S. R. Falta and T. A. Trabold, J. Electrochem. Soc., 156(12), B1475 (2009).
56. K. T. Cho and M. M. Mench, Int. J. Hydrog. Energy, 35(22), 12329 (2010).
57. P. Xu and S. Xu, Fuel Cells, 17(6), 794 (2017)