Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 13, 2022
Revised October 10, 2022
Accepted November 10, 2022
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Synthesis of carbon/P-zeolite composites from coal gasification fine slag and studies on adsorption characteristics for methylene blue
Abstract
Carbon/P-zeolite composites (CPZCs) were synthesized by high-temperature activation followed by hydrothermal crystallization using waste coal gasification fine slag as the raw material and NaOH as the activator. Methylene
blue was selected as a dye pollutant for the adsorption experiment to investigate the adsorption property of the carbon/
P-zeolite composites. It was found that the structure of CPZCs mainly depended on the mass ratio of NaOH to the
coal gasification slag. At a proper NaOH to the coal gasification fine slag mass ratio of 1.0, the as-synthesized CPZC1.0 exhibited a typical Na-P zeolite structure with a relatively high specific surface area of 200 m2
/g and pore volume of
0.21 cm3
/g. CPZC-1.0 showed excellent performance on methylene blue adsorption, with the adsorption capacity
reaching 130 mg/g with removal efficiency of 81.6% at 303 K for the 100 mg/L initial methylene blue solution. The calculation results of adsorption thermodynamics indicated that the adsorption process to methylene blue by CPZCs was
a spontaneous and entropy-driven endothermic process. Based on the above research, it is speculated that the adsorption mechanism of CPZCs to methylene blue might be due to the van der Waals force, intermolecular hydrogen bond
and electrostatic attraction between Na-P zeolite and methylene blue
References
2. Y. Huang, B. Zhou, R. Han, X. Lu, S. Li and N. Li, Environ. Sci.Pollut. Res. Int., 27, 7188 (2020).
3. M. F. Imron, S. B. Kurniawan, A. Soegianto and F. E. Wahyudianto,Heliyon, 5, e02206 (2019).
4. G. Bal and A. Thakur, Mater. Today: Proc., 50, 1575 (2022).
5. A. Yadav, P. Yadav, A.K. Singh, V. Kumar, V.C. Sonawane, Markandeya, R. N. Bharagava and A. Raj, Bioresour. Technol., 340, 125591(2021).
6. G. Elango and S. M. Roopan, J. Photochem. Photobiol. B, 155, 34(2016).
7. M. Rafatullah, O. Sulaiman, R. Hashim and A. Ahmad, J. Hazard.Mater., 177, 70 (2010).
8. Y. Zhao, S. A. Qamar, M. Qamar, M. Bilal and H. M. N. Iqbal, J.Environ. Manage., 300, 113762 (2021).
9. W. Zhang and Z. Zhou, Nanomaterials, 7, 16 (2017).
10. N. U. M. Nizam, M. M. Hanafiah, E. Mahmoudi, A. A. Halim and A. W. Mohammad, Sci. Rep., 11, 8623 (2021).
11. Y. Zhang, J. Dong, F. Guo, Z. Shao and J. Wu, Minerals, 8(3), 116(2018).
12. M. Ahmaruzzaman, Prog. Energy Combust. Sci., 36, 327 (2010).
13. M. Du, J. Huang, Z. Liu, X. Zhou, S. Guo, Z. Wang and Y. Fang,Feul, 224, 178 (2018).
14. X. Liu, Z. Jin, Y. Jing, P. Fan, Z. Qi, W. Bao, J. Wang, X. Yan, P. Lvand L. Dong, Chin. J. Chem. Eng., 35, 92 (2021).
15. S. Wang, Y. Boyjoo and A. Choueib, Chemosphere, 60, 1401 (2005).
16. J. Zhang, J. Zuo, Y. Jiang, D. Zhu, J. Zhang and C. Wei, Solid StateSci., 100, 106084 (2020).
17. J. X. Lin, S. L. Zhan, M. H. Fang, X. Q. Qian and H. Yang, J. Environ. Manage., 87, 193 (2008).
18. N. T. Dinh, L. N. H. Vo, N. T. T. Tran, T. D. Phan and D. B. Nguyen,RSC Adv., 11, 20292 (2021).
19. X. Gao, Y. Dai, Y. Zhang, X. Zhai and F. Fu, Clay Clay Miner, 64,695 (2016).
20. Y. P. Zhao, D. X. Guo, S. F. Li, J. P. Cao and X. Y. Wei, Desalin. Water Treat., 185, 355 (2020).
21. Y. H. Wu, K. Xue, Q. L. Ma, T. Ma, Y. L. Ma, Y. G. Sun and W. X. Ji,Micropor. Mesopor. Mater., 312, 110742 (2021).
22. M. R. Abukhadra, S. M. Ali, E. A. Nasr, H. A. A. Mahmoud and E. M. Awwad, ACS Omega, 5, 14656 (2020).
23. R. L. Tseng, J. Colloid Interface Sci., 303, 494 (2006).
24. M. Maharana and S. Sen, Waste Biomass Valori., 13, 1695 (2021).
25. Y. Cheng, L. Xu, Z. Jiang, C. Liu, Q. Zhang, Y. Zou, Y. Chen, J. Li and X. Liu, Chem. Eng. J., 417, 128090 (2021).
26. M. D. Torres and J. Seijo, Ind. Crop. Prod., 86, 273 (2016).
27. Y. Zhang, H. Han, X. Wang, M. Zhang, Y. Chen, C. Zhai, H. Song,J. Deng, J. Sun and C. Zhang, J. Hazard. Mater., 415, 125627 (2021).
28. S. Bohra, D. Kundu and M. K. Naskar, Mater. Lett., 106, 182 (2013).
29. J. M. Lucero, J. M. Crawford, C. A. Wolden and M. A. Carreon,Micropor. Mesopor. Mater., 324, 111288 (2021).
30. V. Volli and M. K. Purkait, J. Hazard. Mater., 297, 101 (2015).
31. S. Wang, M. Soudi, L. Li and Z. H. Zhu, J. Hazard. Mater., 133,243 (2006).
32. S. Lu, Q. Liu, R. Han, J. Shi, M. Guo, C. Song, N. Ji, X. Lu and D.Ma, Chem. Eng. J., 409, 128194 (2021).
33. N. Belachew and H. Hinsene, Silicon, 14, 1629 (2021).
34. X. Zhang, J. Gao, S. Zhao, Y. Lei, Y. Yuan, C. He, C. Gao and L.Deng, Environ. Sci. Pollut. Res. Int., 26, 32928 (2019).
35. F. Guo, X. Li, X. Jiang, X. Zhao, C. Guo and Z. Rao, Colloids Surf.,A, 555, 43 (2018).
36. E. Alver and A. Ü. Metin, Chem. Eng. J., 200-202, 59 (2012).
37. L. Krishna, K. Soontarapa, N. K. Asmel, M. A. Kabir, A. Yuzir, W. Z.Yaacob and Y. Sarala, Desalin. Water Treat., 150, 348 (2019).
38. F. Salimi, M. Eskandari and C. Karami, Desalin. Water Treat., 85,206 (2017).
39. J. Yan, Y. Li, H. Li, Y. Zhou, H. Xiao, B. Li and X. Ma, Microchem.J., 145, 287 (2019)