Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received June 29, 2022
Revised November 6, 2022
Accepted November 16, 2022
- Acknowledgements
- This work was supported by the National Natural Science Foundation of China (No. 52170034).
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Variation in the quantity and composition of phosphorus accumulating organisms in activated sludge driven by nitrate-nitrogen
Abstract
Anaerobic/anoxia sequencing batch reactor (A/ASBR) system was used to analyze the quantity and composition of each branch of phosphorus accumulating organisms (PAOs) in activated sludge under different nitratenitrogen (NO3
-N) concentrations by using real-time quantitative polymerase chain reaction (PCR) technology. The
study determined whether NO3
-N and its concentration change were the main driving factors for the variation of the
quantity and composition of each branch of PAOs. The results show that with the increase of NO3
-N concentration
from 10 mg/L to 40 mg/L, the number of bacterial 16S rRNA genes in the A/ASBR reactor changed slightly at 6.81×
1011-7.53×1011 copies/g dry sludge. The number of PAO genes (Acc 16S rRNA) increased from 1.98×1011 to 3.53×1011
copies/g dry sludge, and the total number of ppk1 genes increased from 1.25×1011 to 3.59×1011 copies/g dry sludge.
Additionally, the number of polyphosphate kinase (ppk) genes in Accumulibacter branch IA, IIC and IID was high,
and the changes were positively related to the concentration of NO3
-N, while the number of branches in IIA, IIB and
IIF was very low. The dosing concentration of NO3
-N was the main driving factor for the change of PAOs and their
branch number and composition in the A/ASBR reactor.
References
2. T. Zhang, X. S. Wu, S. M. Shaheen, H. Abdelrahman, E. F. Ali, N. S.Bolan, Y. S. Ok, G. X. Li, D. C. W. Tsang and J. Rinklebe, J. Hazard. Mater., 425, 127906 (2022).
3. Y. Yang, H. Q. Zhu, X. H. Xu, L. L. Bao, Y. N. Wang, H. W. Lin and C. Y. Zheng, Micropor. Mesopor. Mater., 324, 111289 (2021).
4. D. D. Ge, H. P. Yuan, J. M. Xiao and N. W. Zhu, Sci. Total. Environ., 679, 298 (2019).
5. Q. Guan, G. S. Zeng, J. T. Song, C. L. Liu, Z. B. Wang and S. L. Wu,J. Environ. Manage., 293, 112961 (2021).
6. A. H. Moghaddam and J. Sargolzaei, J. Disper. Sci. Technol., 35, 563(2014).
7. S. D. A. Masoudi, A. H. Moghaddam, J. Sargolzaei, A. Darroudi and V. Zeynali, Environ. Prog. Sustain., 37, 1638 (2018).
8. A. H. Moghaddam and J. Sargolzaei, J. Taiwan Inst. Chem. E., 49,165 (2015).
9. M. C. Hascoet and M. Florentz, Water S. A., 11, 23 (1985).
10. A. Gerber, R. H. Villiers, E. S. Mostert and C. J. J. Riet, The phenomenon of simultaneous phosphate uptake and release and its importance in biological nutrient removal in: Biogical phosphate removal
from wastewaters, Pergamon Press, Oxford (1987).
11. Y. Comeau, W.K. Oldham and K.J. Hall, Dynamics of carbon reserves in biological dephosphatation of wastewaters, Pergamon Press, Oxford
(1987).
12. K. Øtgaard, M. Christensson, E. Lie, K. Jönsson and T. Welander,Water Res., 31, 2719 (1997).
13. T. Kuba, M. C. M. Van Loosdrecht, F. A. Brandse and J. J. Heignen,Water Res., 31, 777 (1997).
14. G. J. F. M. Vlekke, Y. Comeau and W. K. Oldham, Environ. Technol., 9, 791 (1998).
15. E. Murnleitern, T. kuba, M. C. M. Van Loossdrecht and J. J. Heijnen, Biotechnol. Bioeng., 54, 434 (1997).
16. J. P. Huang, G. Yan, X. Z. Bian and P. Cheng, Journal of North China University of Water Resources and Electric Power (Natural Science
Edition), 42, 100 (2021) (in Chinese).
17. R. L. Xu, Y. B. Fan, Y. S. Wei, Y. W. Wang, N. Luo, M. Yang, X. Yuan and R. Yu, J. Environ. Sci., 48, 59 (2016).
18. T. Kuba, M. C. M. Van Loosdrecht and J. J. Heignen, Water Res.,30, 1702 (1996).
19. A. Dome, C. Y. Chang, W. Aunnop and P. Chayakorn, Environ.Technol., 42, 2950 (2020).
20. C. Li, S. F. Liu, T. Ma, M. S. Zheng and J. R. Ni, Chemosphere, 229,132 (2019).
21. H. K. Li, Y. M. Zhong, H. Huang, Z. X. Tan, Y. Sun and H. Liu, Sci.Total Environ., 744, 140852 (2020).
22. H. K. Li, H. Liu, Q. Q. Zeng, M. Y. Xu, Y. Y. Li, W. Wang and Y. M.Zhong, J. Water Process Eng., 36, 101296 (2020).
23. V. Zeynali, J. Sargolzaei and A. H. Moghaddam, Desalin. Water Treat., 57, 24239 (2016).
24. J. Sargolzaei, A. H. Moghaddam and J. Shayegan, Korean J. Chem.Eng., 28, 1889 (2011).
25. A. H. Moghaddam, H. Hazrati, J. Sargolzaei and J. Shayegan, Appl.Water Sci., 7, 2753 (2017).
26. A. H. Moghaddam, J. Shayegan and J. Sargolzaei, J. Taiwan Inst.Chem. E., 62, 150 (2016).
27. J. Sargolzaei and A. H. Moghaddam, Front. Chem. Sci. Eng., 7, 357(2013).
28. H. Mogens, W. Gujer, T. Mino, T. Matsuo, M. C. Wentzel, G. v. R.Marais and M. C. M. Van Loosdrecht, Water Sci. Technol., 39, 165(1999).
29. J. Londong, Water Sci. Technol., 26, 1087 (1992).
30. E. V. Musvoto, T. G. Casey, G. A. Ekama, M. C. Wentzel and G. V. R.Marais, The effect of a large anoxic mass fraction and concentrations of nitrate and nitrite in the primary anoxic zones on low F/M filament bulking in nutrient removal activated sludge systems, Research
Report W77, Department of Civil Engineering, University of Cape Town, Rondebosch, 7701, Cape, South Africa (1992).
31. X. L. Wang, X. Y. Zhang and H. Lu, Korean J. Chem. Eng., 37, 249(2020).
32. R. P. Hesselmann, C. Werlen, D. Hahn, J. R. van der Meer and A. J.Zehnder, Syst. Appl. Microbiol., 3, 454 (1999).
33. N. A. Keene, S. R. Reusser, M. J. Scarborough, A. L. Grooms, M.Seib, J. S. Domingo and D. R. Noguera, Water Res., 121, 72 (2017).
34. L. Welles, B. Abbas, D. Y. Sorokin, C. M. Lopez-Vazquez, C. M.Hooijmans, M. C. M. Van Loosdrecht and D. Brdjanovic. Front.Microbiol., 7, 2121 (2017).
35. S. He, D. L. Gall and K. D. McMahon, Appl. Environ. Microb., 73,5865 (2007).
36. H. G. Martín, N. Ivanova, V. Kunin, F. Warnecke, K. W. Barry, A. C.McHardy, C. Yeates, S. He, A. A. Salamov, E. Szeto, E. Dalin, N. H.
Putnam, H. J. Shapiro, J. L. Pangilinan, I. Rigoutsos, N. C. Kyrpides,L. L. Blackall, K. D. McMahon and P. Hugenholtz, Nat. Biotechnol.,24, 1263 (2006).
37. J. J. Flowers, T. A. Cadkin and K. D. McMahon, Water Res., 47, 7019(2013).
38. M. Albertsen, S. J. McIlroy, M. Stokholm-Bjerregaard, S. M. Karst and P. H. Nielsen, Front. Microbiol., 16, 1 (2016).
39. G. B. Zhu, Y. Z. Peng and S. Y. Wang, Environ. Eng. Sci., 24, 1111(2007).
40. X. F. Wang, Method for monitoring and analyzing water and waste water, China Environmental Science Press, Beijing (2002).
41. C. Li, Population dynamics and morphotypes analysis of paos in denitrifying phosphorus removal systems, Beijing University of Technology, Beijing (2018).
42. B. X. Li, Study on function and community structure of candidatus accumulibacter in denitrifying phosphorus removal system, Beijing
University of Technology, Beijing (2013).
43. Y. P. Mao, D. W. Graham, H. Tamaki and T. Zhang, Sci. Rep., 46,11857 (2015).
44. Z. R. Hu, M. C. Wentzel and G. A. Ekama, Water Res., 36, 4927(2002).
45. W. Zeng, X. L. Bai, Y. Guo, N. Li and Y. Z. Peng, Enzyme Microb.Tech., 105, 1 (2017).
46. W. Zeng, B. X. Li, X. D. Wang, X. L. Bai and Y. Z. Peng, Chemosphere, 144, 1018 (2016).
47. P. Y. Camejo, B. R. Owen, J. Martirano, J. Ma, V. Kapoor, J. S.Domingo, K. D. McMahon and D. R. Noguera, Water Res., 102,125 (2016).
48. C. T. Skennerton, J. J. Barr, F. R. Slater, P. L. Bond and G. W. Tyson,Environ. Microbiol., 17, 1574 (2015).
49. J. J. Flowers, S. He, S. Yilmaz, D. R. Noguera and K. D. McMahon,Env. Microbiol. Rep., 1, 583 (2009).
50. G. Carvalho, P. C. Lemos, A. Oehmen and M. A. M. Reis, Water Res., 41, 4383 (2007)