ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received September 26, 2022
Revised November 18, 2022
Accepted December 8, 2022
Acknowledgements
The authors gratefully acknowledge the financial support by Ratchadaphiseksomphot Fund (Chulalongkorn University for Postdoctoral Fellowship) and Thailand Science Research and Innovation Fund, Chulalongkorn University (CU_FRB65_ind(7)_155_ 21_21). Sincere thanks also go to the National e-Science Infrastructure Consortium (NECTEC) for providing computing resources that have contributed to the research results reported within this paper as well as Separation Laboratory (Department of Chemical Engineering, Fac
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Applicability of HFSLM for Nd(III) recovery via organophosphorus carrier: A conceptual DFT approach towards structural chemistry, mechanistic investigation and transport behavior

1Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand 2Department of Chemistry and NU-Research Center for Petroleum, Petrochemicals and Advanced Materials, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand
kraiwanp@nu.ac.th, ura.p@chula.ac.th
Korean Journal of Chemical Engineering, July 2023, 40(7), 1672-1685(14), 10.1007/s11814-022-1369-8
downloadDownload PDF

Abstract

This work highlights the enrichment of Nd(III) via hollow fiber supported liquid membrane (HFSLM). In terms of the practicability to separate Nd(III), the influence of significant factors and the behavior of different carrier concentrations were evaluated. Using Di-(2-ethylhexyl)phosphoric acid (D2EHPA) as a ligand carrier, high enrichment performance of Nd(III) can be achieved. Under optimum conditions, extraction and stripping of Nd(III) reached 99.80% and 78.58%, respectively. Further, the active Nd(III) transportation was analyzed to emphasize key parameters that govern the separation process. The values kex (cm/s) and ex (%) were found to be 1.38×105 and 81.20, respectively, indicating the mass transfer due to chemical reaction is the controlling step. Density-functional theory (DFT) was applied to explore the interaction mechanisms from a microscopic viewpoint. Comprehensive analysis was made to achieve better insight regarding the reaction mechanisms and the structural chemistry underlying the process of Nd(III) enrichment

References

1. E. Elbashier, A. Mussa, M. Hafiz and A. H. Hawari, Hydrometallurgy, 204, 105706 (2021).
2. H. Vapnik, J. Elbert and X. Su, J. Mater. Chem. A, 9, 20068 (2021).
3. V. C. A. Ruiz, R. Kuchi, P. K. Parhi, J. Y. Lee and R. K. Jyothi, Sci.Rep., 10, 16911 (2020).
4. M. Gergoric, C. Ekberg, B. M. Steenari and T. Retegan, J. Sustain.Metall., 3, 601 (2017).
5. P. P. Sun, D. H. Kim and S. Y. Cho, Miner. Eng., 118, 9 (2018).
6. R. Zarrougui, R. Mdimagh and N. Raouafi, Sep. Purif. Technol., 175,87 (2017).
7. S. N. Almeida and H. E. Toma, Hydrometallurgy, 161, 22 (2016).
8. Y. Chen, H. Wang, Y. Pei and J. Wang, Talanta, 182, 450 (2018).
9. S. Uchiyama, T. Sasaki, R. Ishihara, K. Fujiwara, T. Sugo, D. Umeno and K. Saito, J. Chromatogr. A, 1533, 10 (2018).
10. B. Swain, S. Sarkar, K. K. Singh and A. K. Pabby, Chem. Eng. Processing: Process Intens., 161, 108300 (2021).
11. H. S. Yoon, C. J. Kim, K. W. Chung, S. D. Kim, J. Y. Lee and J. R.Kumar, Hydrometallurgy, 165, 27 (2016).
12. A. C. Ni’am, Y. F. Wang, S. W. Chen, G. M. Chang and S. J. You,Chem. Eng. Processing: Process Intens., 148, 107831 (2020).
13. L. Chen, Y. Wu, H. Dong, M. Meng, C. Li, Y. Yan and J. Chen, Sep.Purif. Technol., 197, 70 (2018).
14. J. Song, T. Huang, H. Qiu, X. Niu, X. M. Li, Y. Xie and T. He, Desalination, 440, 18 (2018).
15. V. Mohdee, P. Ramakul, S. Phatanasri and U. Pancharoen, J. Environ. Chem. Eng., 8, 104234 (2020).
16. M. D. Scott, J. Schorp, L. Sutherlin and J. D. Robertson, Appl. Radiat.Isot., 157, 109027 (2020).
17. D. N. Ambare, S. A. Ansari, M. Anitha, P. Kandwal, D. K. Singh,H. Singh and P. K. Mohapatra, J. Membr. Sci., 446, 106 (2013).
18. S. A. Ansari and P. K. Mohapatra, Cleaner Eng. Technol., 4, 100138(2021).
19. T. Wannachod, P. Phuphaibul, V. Mohdee, U. Pancharoen and S.Phatanasri, Miner. Eng., 77, 1 (2015).
20. Q. Yang and N. M. Kocherginsky, J. Membr. Sci., 286, 301 (2006).
21. M. K. Hosseini, L. Liu, P. K. Hosseini, A. Bhattacharyya, K. Lee, J.Miao and B. Chen, J. Mar. Sci. Eng., 10, 1313 (2022).
22. R. Naim, G. P. Sean, Z. Nasir, N. M. Mokhtar and N. A. Safiah Muhammad, Membranes, 11, 839 (2021).
23. T. Wannachod, N. Leepipatpiboon, U. Pancharoen and K. Nootong,J. Ind. Eng. Chem., 20, 4152 (2014).
24. E. G. Lewars, Computational chemistry: Introduction to the theory and applications of molecular and quantum mechanics, Springer,Berlin (2003).
25. L. He, L. Bai, D. D. Dionysiou, Z. Wei, R. Spinney, C. Chu, Z. Lin and R. Xiao, Chem. Eng. J., 426, 131810 (2021).
26. M. Hajji, N. Abad, M. A. Habib, S. M. H. Elmgirhi and T. Guerfel,J. Indian Chem. Soc., 98, 100208 (2021).
27. R. Cao, P. Tang, X. Yang and Z. Sun, J. Mol. Liq., 357, 119108 (2022).
28. P. Liang, W. Liming and Y. Guoqiang, J. Rare Earths, 30, 63 (2012).
29. F. Kubota, M. Goto and F. Nakashio, Solvent Extr. Ion Exch., 11(3),437 (1993).
30. K. Chakrabarty, P. Saha and A. K. Ghoshal, J. Membr. Sci., 340, 84 (2009).
31. M. Alonso, A. L. Delgado, A. M. Sastre and F. J. Alguacil, Chem. Eng.J., 118, 213 (2006).
32. P. R. Danesi, J. Membr. Sci., 20, 231 (1984).
33. Y. Tang, W. Liu, J. Wan, Y. Wang and X. Yang, Process Biochem.,48, 1980 (2013).
34. M. A. Leveque and L. L. De la, Ann. Mines., 13, 201 (1928).
35. D. Azizi and F. Larachi, J. Mol. Liq., 263, 96 (2018).
36. T. Wongsawa, N. Sunsandee, A. W. Lothongkum, U. Pancharoen and S. Phatanasri, Fluid Phase Equilib., 388, 22 (2015).
37. W. Srirachat, T. Wannachod, U. Pancharoen and S. Kheawhom,Fluid Phase Equilib., 434, 117 (2017).
38. L. E. Vargas and L. M. O. Carmona, Minerals, 12, 948 (2022).
39. A. R. Allouche, J. Com. Chem., 32, 174 (2011).
40. Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V.Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato,
X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,
M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.
A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd,E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J.Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B.
Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P.Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Farkas, J. B.Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc.,Wallingford CT (2009).
41. M.D. Hanwell, D.E. Curtis, D.C. Lonie, T. Vandermeersch, E. Zurek and G. R. Hutchison, J. Cheminformatics, 4(17) (2012).
42. D. Zhao, Y. Xiong, Y. Wang, B. Lu and H. Zhang, Fuel, 331, 125704(2023).
43. N. A. Grigorieva, I. Y. Fleitlikh, A. Y. Tikhonov, V. I. Mamatyuk,E. V. Karpova and O. A. Logutenko, Hydrometallurgy, 213, 105925(2022).
44. A. Baez-Castro, J. Baldenebro-Lopez, D. Glossman-Mitnik, H. Hopfl,A. Cruz-Enríquez, V. Miranda-Soto, M. Parra-Hake and J. J. Campos-Gaxiola, J. Mol. Struct., 1099, 126 (2015).
45. N. Sulaiman and M. Eng. Thesis, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Thailand (2000).
46. V. Mohdee, C. Woraboot, K. Maneeintr, K. Nootong and U. Pancharoen, Sep. Purif. Technol., 286, 120431 (2022).
47. B. S. Dwadasi, S. G. Srinivasan and B. Rai, Phys. Chem. Chem. Phys.,22, 4177 (2020).
48. E. A. Fouad and H.-J. Bart, J. Membr. Sci., 307, 156 (2008).
49. S. H. Yin, S. W. Li, F. Xie, L. B. Zhang and J. H. Peng, RSC Adv., 5,64550 (2015).
50. H. S. Yoon, C. J. Kim, K. W. Chung, S. D. Kim and J. R. Kumar, J.Braz. Chem. Soc., 1 (2015).
51. L. Harimu, S. Matsjeh, D. Siswanta, S. J. Sentosa and I. W. Sutapa, J.Physics: Conference Series, 1341, 032003 (2019).
52. B. Swain and M. Tanaka, Chem. Eng. Commun., 205, 1484 (2018).
53. M. Panigrahi, M. Grabda, D. Kozak, A. Dorai, E. Shibata, J.Kawamura and T. Nakamura, Sep. Purif. Technol., 171, 263 (2016).
54. K. R. Chitra, A. G. Galkwad, G. D. Surender and A. D. Damodaran, Chem. Eng. J., 60, 63 (1995).
55. S. Panja, R. Ruhela, S. K. Misra, J. N. Sharma, S. C. Tripathi and A.Dakshinamoorthy, J. Membr. Sci., 325, 158 (2008).
56. M. Vajda, Š. Schlosser and K. Kováčová, Chem. Papers, 54(6b),423 (2000).
57. Š. Schlosser and E. Sabolová, Chem. Papers, 53(6), 403 (1999).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로