ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 11, 2022
Revised November 24, 2022
Accepted December 16, 2022
Acknowledgements
This work was supported by the National Natural Science Foundation of China (Grant No. 42177032) and the National Key R&D Program of China (Grant No. 2018YFC1802005). We thank LetPub for its linguistic assistance during the preparation of this manuscript.
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Effect of manganese doping on the PbO2 electrode for the enhanced electrochemical oxidation of anthracene: Optimization and mechanism

1Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China 2University of Chinese Academy of Sciences, Beijing 100049, China
canglong@issas.ac.cn
Korean Journal of Chemical Engineering, July 2023, 40(7), 1686-1698(13), 10.1007/s11814-023-1379-1
downloadDownload PDF

Abstract

Organic pollutant removal can be realized via electrochemical degradation, and anodic oxidation plays an important role in the degradation process. However, the degradation process is hindered by low removal efficiency and reusability. In this study, a PbO2 electrode and a Mn-doped PbO2 (Mn-PbO2) electrode were prepared via electrodeposition. Different from the traditional method of increasing the oxygen evolution potential (OEP) of PbO2 electrode, such as introducing Ce, Bi, and La in PbO2 electrode, introducing Mn in PbO2 electrode promoted the generation of strong oxidant MnO4  under electrolytic conditions to remove organic pollutants. The Mn-PbO2 electrode was used for anthracene (ANT) degradation and the results showed that an ANT removal efficiency of 91.28% was achieved in 120 min under the most suitable operational variables, namely, a Na2SO4 concentration of 0.1 M, initial pH of 7, and current density of 20 mA/cm2 . In addition, the ANT degradation mechanism was analyzed. Given that the Mn-PbO2 electrode exhibited better removal efficiency in the wide pH range and remarkable degradation efficiency compared with the PbO2 electrode, the Mn-PbO2 electrode has practical application prospects for organic pollutant degradation.

References

1. X. Du, M. A. Oturan, M. Zhou, N. Belkessa, P. Su, J. Cai, C. Trellu and E. Mousset, Appl. Catal. B-Environ., 296, 120332 (2021).
2. R. V. McQuillan, G. W. Stevens and K. A. Mumford, J. Hazard.Mater., 383, 121244 (2020).
3. S.W. da Silva, E.M.O. Navarro, M.A.S. Rodrigues, A.M. Bernardes and V. Perez-Herranz, J. Electroanal. Chem., 832, 112 (2019).
4. F. Sopaj, M. A. Rodrigo, N. Oturan, F. I. Podvorica, J. Pinson and M. A. Oturan, Chem. Eng. J., 262, 286 (2015).
5. H. Lin, J. Niu, S. Ding and L. Zhang, Water Res., 46, 2281 (2012).
6. L. A. Perea, R. E. Palma-Goyes, J. Vazquez-Arenas, I. Romero-Ibarra,C. Ostos and R.A. Torres-Palma, Sci. Total Environ., 648, 377 (2019).
7. L. Labiadh, A. Barbucci, M. P. Carpanese, A. Gadri, S. Ammar and M. Panizza, J. Electroanal. Chem., 766, 94 (2016).
8. R. Xie, X. Meng, P. Sun, J. Niu, W. Jiang, L. Bottomley, D. Li, Y.Chen and J. Crittenden, Appl. Catal. B-Environ., 203, 515 (2017).
9. N. Gedam, N. R. Neti, M. Kormunda, J. Subrt and S. Bakardjieva,Electrochim. Acta, 169, 109 (2015).
10. S. Alcocer, A. Picos, A. R. Uribe, T. Perez and J. M. Peralta-Hernandez, Chemosphere, 205, 682 (2018).
11. Y. Jiang, Z. Hu, M. Zhou, L. Zhou and B. Xi, Sep. Purif. Technol.,128, 67 (2014).
12. Y. Liu and H. Liu, Electrochim. Acta, 53, 5077 (2008).
13. G. Bonyadinejad, M. Sarafraz, M. Khosravi, A. Ebrahimi, S. M.Taghavi-Shahri, R. Nateghi and S. Rastaghi. Korean J. Chem. Eng.,33(1), 189 (2016).
14. S. Song, J. Fan, Z. He, L. Zhan, Z. Liu, J. Chen and X. Xu, Electrochim. Acta, 55, 3606 (2010).
15. Y. Xia, J. Feng, S. Fan, W. Zhou and Q. Dai, Chemosphere, 263,128069 (2021).
16. J. Hu, X. Bian, Y. Xia, M. Weng, W. Zhou and Q. Dai, Sep. Purif.Technol., 250, 117109 (2020).
17. Y. Yao, M. Li, Y. Yang, L. Cui and L. Guo, Chemosphere, 216, 812(2019).
18. M. Xu, Z. Wang, F. Wang, P. Hong, C. Wang, X. Ouyang, C. Zhu,Y. Wei, Y. Hun and W. Fang, Electrochim. Acta, 201, 240 (2016).
19. P. Li, Y. Zhao, B. Ding and L. Wang, J. Electroanal. Chem., 747, 45(2015).
20. Z. Lv, Z. Chen, Q. Yu, W. Zhu, H. You, B. Chen, Z. Zheng, Y. Liu and Q. Hu, RSC Adv., 11, 28949 (2021).
21. Y. G. Gu, H. B. Li and H. B. Lu, Ecol. Eng., 101, 179 (2017).
22. R. Chen, J. Lv, W. Zhang, S. Liu and J. Feng, Environ. Earth. Sci.,74, 2743 (2015).
23. A. Desaules, S. Ammann, F. Blum, R. C. Brandli, T. D. Bucheli and A. Keller, J. Environ. Monitor., 10, 1265 (2008).
24. T. Cai, Y. Ding, Z. Zhang, X. Wang, T. Wang, Y. Ren and Y. Dong,Environ. Pollut., 254, 112981 (2019).
25. R. Lopez-Vizcaino, J. Alonso, P. Canizares, M. J. Leon, V. Navarro,M. A. Rodrigo and C. Saez, J. Hazard. Mater., 265, 142 (2014).
26. H. Lin, J. Niu, J. Xu, Y. Li and Y. Pan, Electrochim. Acta, 97, 167 (2013).
27. X. Tan, Y. Zhao, W. Sun, C. Jin, L. Chen, H. Wei and C. Sun, J. Electroanal. Chem., 856, 113726 (2020).
28. B. Tang, L. Zhang and Y. Geng, Talanta, 65, 769 (2005).
29. L. Chen, X. Peng, J. Liu, J. Li and F. Wu, Ind. Eng. Chem. Res., 51,13632 (2012).
30. Y. Xia, X. Bian, Y. Xia, W. Zhou, L. Wang, S. Fan, P. Xiong, T.Zhan, Q. Dai and J. Chen, Sep. Purif. Technol., 237, 116321 (2020).
31. D. Devilliers, M. T. D. Thi, E. Mahe and Q. L. Xuan, Electrochim.Acta, 48, 4301 (2003).
32. B. Zhao, H. Yu, Y. Lu, J. Qu, S. Zhu and M. Huo, J. Taiwan Inst.Chem. Eng. E., 100, 144 (2019).
33. H. T. Yang, B. M. Chen, Z. C. Guo, H. R. Liu, Y. C. Zhang, H. Huang,R. D. Xu and R. C. Fu, T. Nonferr. Metal. Soc., 24, 3394 (2014).
34. Y. Wang, M. Chen, C. Wang, X. Meng, W. Zhang, Z. Chen and J.Crittenden, Chem. Eng. J., 374, 626 (2019).
35. P. Duan, S. Gao, J. Lei, X. Li and X. Hu, Environ. Pollut., 263, 114436 (2020).
36. M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R.Gerson and R. S. C. Smart, Appl. Surf. Sci., 257, 2717 (2011).
37. M. Xu, Y. Mao, W. Song, X. OuYang, Y. Hu, Y. Wei, C. Zhu, W.Fang, B. Shao, R. Lu and F. Wang, J. Electroanal. Chem., 823, 193(2018).
38. P. J. Blood, I. J. Brown and S. Sotiropoulos, J. Appl. Electrochem., 34,1 (2004).
39. H. Mo, Y. Tang, N. Wang, M. Zhang, H. Cheng, Y. Chen, P. Wan,Y. Sun, S. Liu and L. Wang, J. Solid State Electr., 20, 2179 (2016).
40. X. Zhou, S. Liu, A. Xu, K. Wei, W. Han, J. Li, X. Sun, J. Shen, X.Liu and L. Wang, Chem. Eng. J., 330, 956 (2017).
41. L. Yu, J. Xue, L. Zhang, C. Tang and Y. Guo, Electrochim. Acta, 368,137532 (2021).
42. L. Chen, C. Lei, Z. Li, B. Yang, X. Zhang and L. Lei, Chemosphere,210, 516 (2018).
43. H. Yu, Y. Song, B. Zhao, Y. Lu, S. Zhu, J. Qu, X. Wang and W. Qin,Electrocatalysis, 9, 725 (2018).
44. W. Zhao, J. Xing, D. Chen, D. Jin and J. Shen, J. Electroanal. Chem.,775, 179 (2016).
45. C. Salazar, N. Contreras, H. D. Mansilla, J. Yanez and R. Salazar, J.Hazard. Mater., 319, 84 (2016).
46. H. Xu, Q. Yuan, D. Shao, H. Yang, J. Liang, J. Feng and W. Yan, J.Hazard. Mater., 286, 509 (2015).
47. F. Wei, D. Liao, Y. Lin, C. Hu, J. Ju, Y. Chen and D. Feng, Sep.Purif. Technol., 258, 118056 (2021).
48. S. Chen, P. He, X. Wang, F. Xiao, P. Zhou, Q. He, L. Jia, F. Dong,H. Zhang, B. Jia, H. Liu and B. Tang, Chemosphere, 268, 128799(2021).
49. S. Chen, J. Li, L. Liu, Q. He, L. Zhou, T. Yang, X. Wang, P. He, H.Zhang and B. Jia, Chemosphere, 256, 127129 (2020).
50. P. Maharaja, R. Boopathy, S. Karthikeyan, M. Mahesh, A. S. Komal,V. K. Gupta and G. Sekaran, J. Environ. Sci. Technol., 13, 2143(2016).
51. A. Mirza, M. Burr, T. Ellis, D. Evans, D. Kakengela, L. Webb, J. Gagnon, F. Leclercq and A. Johnston, J. S. Afr. I. Min Metall., 116(6),533 (2016).
52. J. Iniesta, J. Gonzalez-Garcia, E. Exposito, V. Montiel and A. Aldaz,Water Res., 35(14), 3291 (2001).
53. D. Wang, Y. Li, M. Yang and M. Han, Sci. Total Environ., 393, 64(2008).
54. L. Chu, Z. Sun, L. Cang, G. Fang, X. Wang, D. Zhou and J. Gao,Chem. Eng. J., 400, 125945 (2020).
55. A. Mallakin, B. J. McConkey, G. B. Miao, B. McKibben, V. Snieckus,D. G. Dixon and B. M. Greenberg, Ecotox. Environ. Safe., 43, 204(1999).
56. C. Liang, Z. S. Wang and C. J. Bruell, Chemosphere, 66, 106 (2007).
57. G. D. Fang, D. M. Zhou and D. D. Dionysiou, J. Hazard. Mater.,250-251, 68 (2013).
58. X. Duan, C. Zhao, W. Liu, X. Zhao and L. Chang, Electrochim.Acta, 240, 424 (2017).
59. T. Xu, Z. Wang, Y. Ding, W. Xu, W. Wu, Z. Zhu and H. Fong, Carbohyd. Polym., 179, 164 (2018).
60. S. W. da Silva, E. M. O. Navarro, M. A. S. Rodrigues, A. M. Bernardes and V. Perez-Herranz, Chemosphere, 210, 615 (2018).
61. S. Garcia-Segura, E. V. dos Santos and C. A. Martinez-Huitle, Electrochem. Commun., 59, 52 (2015).
62. A. Baddouh, B. El Ibrahimi, M. M. Rguitti, E. Mohamed, S. Hussain and L. Bazzi, Sep. Sci. Technol., 55, 1852 (2019).
63. X. Zhu, W. Hu, C. Feng, N. Chen, H. Chen, P. Kuang, Y. Deng and L. Ma, Chemosphere, 269, 128734 (2021).
64. H. Li, H. Jiang, C. Liu, C. Zhu and X. P. Zhu, ChemistryOpen, 8,1421 (2019).
65. X. Y. Li, Y. H. Cui, Y. J. Feng, Z. M. Xie and J. D. Gu, Water Res., 39,1972 (2005).
66. A. Dirany, I. Sires, N. Oturan, A. Ozcan and M. A. Oturan, Environ. Sci. Technol., 46, 4074 (2012).
67. Y. H. Cui, X. Y. Li and G. Chen, Water Res., 43, 1968 (2009).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로