ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received December 27, 2022
Revised January 28, 2023
Accepted January 31, 2023
Acknowledgements
This work was supported by the 2019 Yeungnam University Research Grant
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Utilization of functionalized silane coatings for enhanced mechanical properties of hydroxyapatite filler

1Division of Chemical Engineering and Materials Science, Ewha Womans University, Seoul 03760, Korea 2School of Chemical Engineering, Yeungnam University, 280 Daehakro, Gyeongsan, Gyeongbuk 38541, Korea
jhseo78@yu.ac.kr, kijoo@ewha.ac.kr
Korean Journal of Chemical Engineering, July 2023, 40(7), 1709-1714(6), 10.1007/s11814-023-1396-0
downloadDownload PDF

Abstract

Silane coupling agents are widely used as molecular bridges between inorganic minerals and organic materials to modify surface properties for diverse biomedical applications. In this study, we developed hydroxyapatite (HAp)-based scaffolds by fabricating the surface of HAp pellets with silane coupling agents containing methacrylate, amine, and carboxylic acid functional groups to improve their mechanical properties for use as biodegradable fillers in dental and bone regeneration applications. Surface coating with carboxylic acid-functionalized silane exhibited a substantially enhanced mechanical strength of up to 30 MPa, which possibly resulted from the stable configuration of interfacial bonding via electrostatic attractive interaction in the a-planes of the HAp pellets. Furthermore, the functionalized silane-coated HAp scaffolds displayed excellent biocompatibility, which suggests that they could be utilized as bone filler composites for bone tissue engineering.

References

1. N. Eliaz and N. Metoki, Materials, 10, 334 (2017).
2. R. A. Surmenev, M. A. Surmeneva and A. A. Ivanova, Acta Biomaterialia, 10, 557 (2014).
3. S. V. Dorozhkin, Biomaterials, 31, 1465 (2010).
4. P. P. Patel, C. Buckley, B. L. Taylor, C. C. Sahyoun, S. D. Patel, A. J.Mont, L. Mai, S. Patel and J. W. Freeman, J. Biomed. Mater. Res.
Part A, 107, 732 (2019).
5. J. Jeong, J. H. Kim, J. H. Shim, N. S. Hwang and C. Y. Heo, Biomater. Res., 23, 4 (2019).
6. Y. Song, K. I. Joo and J. H. Seo, Biotechnol. Bioprocess Eng., 26, 201 (2021).
7. K. Akhtar, C. Pervez, N. Zubair and H. Khalid, J. Mater. Sci.: Mater.Med., 32, 129 (2021).
8. C. Santos, Z. B. Luklinska, R. L. Clarke and K. W. M. Davy, J. Mater.Sci.: Mater. Med., 12, 565 (2001).
9. J. Venkatesan and S. Anil, Biotechnol. Bioprocess Eng., 26, 312 (2021).
10. D. Puppi, F. Chiellini, A. M. Piras and E. Chiellini, Prog. Polym. Sci.,35, 403 (2010).
11. K. Rezwan, Q. Z. Chen, J. J. Blaker and A. R. Boccaccini, Biomaterials, 27, 3413 (2006).
12. Z. Wang, S. Wang, Y. Marois, R. Guidoin and Z. Zhang, Biomaterials, 26, 7387 (2005).
13. E.-j. Cheon, S.-H. Kim, D.-K. Lee, Y.-K. Jo, M.-R. Ki, C.-J. Park,
H.-S. Jang, J.-S. Ahn, S.-P. Pack and S.-H. Jun, Biotechnol. Bioprocess Eng., 26, 923 (2021).
14. R. A. Sousa, R. L. Reis, A. M. Cunha and M. J. Bevis, J. Mater. Sci.Mater. Med., 14, 475 (2003).
15. Z. Fang and Q. Feng, Mater. Sci. Eng. C, 35, 190 (2014).
16. O. G. Cisneros-Pineda, W. Herrera Kao, M. I. Loría-Bastarrachea,Y. Veranes-Pantoja, J. V. Cauich-Rodríguez and J. M. Cervantes-Uc,Mater. Sci. Eng. C, 40, 157 (2014).
17. F. Liu, B. Sun, X. Jiang, S. S. Aldeyab, Q. Zhang and M. Zhu, Dent.Mater., 30, 1358 (2014).
18. Y. Xie, C. A. S. Hill, Z. Xiao, H. Militz and C. Mai, Compos. Part A:Appl. Sci. Manuf., 41, 806 (2010).
19. S. C. Chowdhury, R. Prosser, T. W. Sirk, R. M. Elder and J. W. Gillespie, Appl. Surf. Sci., 542, 148738 (2021).
20. C. Shuai, C. Shuai, P. Feng, Y. Yang, Y. Xu, T. Qin, S. Yang, C. Gao and S. Peng, Molecules, 22, 511 (2017).
21. F. Ghorbani, M. Pourhaghgouy, T. Mohammadi-hafshehjani and A. Zamanian, Silicon, 12, 3015 (2020).
22. A. Nikbakht, C. Dehghanian and R. Parichehr, RSC Adv., 11, 26127(2021).
23. Y. J. Chuah, S. Kuddannaya, M. H. A. Lee, Y. Zhang and Y. Kang,Biomater. Sci., 3, 383 (2015).
24. S. Somasundaram, J. Biomed. Mater. Res. B Appl. Biomater., 106, 2901(2018).
25. R. Astala and M. J. Stott, Phy. Rev. B, 78, 075427 (2008).
26. H. Oonishi, Biomaterials, 12, 171 (1991).
27. W. Suchanek and M. Yoshimura, J. Mater. Res., 13, 94 (1998).
28. I.S. Harding, N. Rashid and K.A. Hing, Biomaterials, 26, 6818 (2005).
29. Z. Zhuang, T. J. Fujimi, M. Nakamura, T. Konishi, H. Yoshimura and M. Aizawa, Acta Biomater., 9, 6732 (2013).
30. Y. In, U. Amornkitbamrung, M.-H. Hong and H. Shin, ACS Omega,5, 27204 (2020).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로