ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received November 15, 2022
Revised January 18, 2023
Accepted January 31, 2023
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Molecular encapsulation of nortriptyline in the -cyclodextrin cavity: In-vitro cytotoxic potential against MCF-7 cell line

1School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea 2Department of Chemistry, Periyar Maniammai Institute of Science and Technology, Thanjavur - 613 403, India 3Department of Chemistry, P.S.V College of Engineering and Technology, Krishnagiri - 635 108, India 4Department of Chemistry, Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya (Deemed University), Kanchipuram - 631 561, India
Korean Journal of Chemical Engineering, July 2023, 40(7), 1715-1724(10), 10.1007/s11814-023-1399-x
downloadDownload PDF

Abstract

In the liquid state, UV-visible and fluorescence spectroscopy was used to examine the inclusion complexes of nortriptyline (NP) and -cyclodextrin (-CD). The degree of inclusion complexation causes NP’s absorbance and fluorescence intensity to be significantly increased during interaction with -CD. The binding constant was determined by UV-VIS and fluorescence spectroscopy, and the results indicated a 1 : 1 stoichiometry for the inclusion complex at 303 K. Complexation is a spontaneous and exothermic process, as determined by Gibbs’s free energy change. To produce solid inclusion complexes (ICs), mixing and co-precipitation were used, which were then characterized using Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), X-ray powder diffraction (XRD), and thermogravimetric analysis/differential scanning calorimetry (TGA/DSC). According to molecular docking studies, the aromatic ring of the NP does not penetrate the secondary hydroxyl rim of the -CD cavity, but the aliphatic part of the NP trapped in the cavity is more thermodynamically advantageous. NP and NP : -CD-ICs were screened for in vitro cytotoxicity on Michigan Cancer Foundation-7 (MCF-7) cell line using the 3-(4,5-dimethylthiazol2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, and the results showed that the cytotoxicity was not affected by creating an ICs

References

1. J. R. Hughes, Addiction, 101, 1362 (2006).
2. E. Kirino and M. Gitoh, Neuropsychiatr. Dis Treat., 7, 723 (2011).
3. J. R. Dell and C. W. Butrick, J. Reprod Med., 51, 253 (2006).
4. X. Mao, T. Hou, B. Cao, W. Wang, Z. Li, S. Chen, M. Fei, R. Hurren, M. Gronda, D. Wu, S. Trudel and A. D. Schimmer, Mol. Pharmacol., 79, 672 (2011).
5. J. Ma, Y. Qiu, L. Yang, L. Peng, Z. Xia, L. N. Hou, C. Fang, H. Qi and H. Z. Chen, J. Neuro-Oncol., 101, 41 (2011).
6. P. Kabolizadeh, B. J. Engelmann, N. Pullen, J. K. Stewart, J. J. Ryan and N. P. Farrell, J. Biol. Inorg. Chem., 17, 123 (2012).
7. V. Muthusamy, S. Prabu, S. Krishnamoorthy and R. Rajaram, J.Macromol. Sci. Part A., 53, 781 (2016).
8. V. Muthusamy, S. Prabu, S. Krishnamoorthy and R. Rajaram, Ins.Sci. Tech., 44, 651 (2016).
9. K. A. Parker, S. Glaysher, J. Hurren, L. A. Knight, D. McCormick,A. Suovouri, V. Amberger-Murphy, G. J. Pilkington and I. A. Cree,Anticancer Drugs, 23, 65 (2012).
10. P. Chih-Chuan, C. F. Shaw, J. K. Huang, C. C. Kuo, D. H. Kuo, P.Shieh, T. Lu, W. C. Chen, C. M. Ho and C. R. Jan, Drug Dev. Res.,71, 323 (2010).
11. E. S. Sinem and A. Umit, J. Sol. Chem., 48, 1535 (2019).
12. A. Umit, J. Appl. Spec., 88, 838 (2021).
13. E. S. Sinem and A. Umit, Inorg. Chem. Comm., 114, 107820 (2020).
14. F. W. Lichtenthaler and S. Immel, Starch/Starke, 48, 145 (1996).
15. F. Paola and M. Iolandade, J CO2 Util., 44, 101397 (2021).
16. Y. Tingxuan, J. Mengru, S. Yuxi, Y. Tingyuan, Z. Jie, Z. Huiwen and W. Zhixiang, J. Incl. Phen. Macro. Chem., 96, 285 (2020).
17. H. Xie, H. Z. Wangb, Y. Mac Li, Y. Xiaob and J. Hanb, Spectrochim. Acta Part A, 62, 197 (2005).
18. J. B. Chao, H. B. Tong, D. S. Liu and S. P. Huang, Spectrochim. Acta Part A, 64, 166 (2006).
19. K. Kuppusamy, X. Chao, R. Ming, F. Chunying, B. Victor, C. Guo,Z. Dayang, Z. Zhihui, S. Dan, Y. Xingke, Y. Jiabin, H. Taotao, W.Wanhua, J. C. Jason and Y. Cheng, iScience, 23, 100927 (2020).
20. A. A. Elbashir, N. F. A. Dsugi and H. Y. Aboul-Enein, J. Fluoresc.,24, 355 (2014).
21. J. B. Chao, H. B. Tong, S. P. Huang and D. S. Liu, Spectrochim. Acta Part A., 60, 161 (2005).
22. L. Liu and Q.X. Guo, J. Inc. Phenom. Macrocyclic Chem., 42, 1 (2002).
23. S. Saha, H. Agarwalla, H. Gupta, M. Baidya, E. Suresh, S. K. Ghosh and A. Das, Dalton Trans., 42, 15097 (2013).
24. R. Rajamohan, S. Kothai Nayaki, K. Sivakumar and M. Swaminathan, J. Lumin., 68, 245 (2015).
25. S. Prabu, N. Abdul Samad, N. Afiqah Ahmad, K. Jumbri, M. Raoov,N. Yani Rahim, S. Kanagesan and M. Sharifah, Carb. Res., 497,
108138 (2020).
26. D. Duhovny, R. Nussinov and H. J. Wolfson, Proceedings of the 2nd Workshop on Algorithms in Bioinformatics (WABI), Rome,Italy, Lecture Notes in Computer Science, Springer Verlag, 2452,185 (2002).
27. M. L. Connolly, J. Appl. Crystallogr., 16, 548 (1983).
28. C. Zhang, G. Vasmatzis, J. L. Cornette and C. DeLisi, J. Mol. Biol.,267, 707 (1997).
29. M. Murugan, A. Anitha, K. Sivakumar and R. Rajamohan, J. Mol.Liq., 325, 115157 (2020).
30. V. Ramamurthy and D. F. Eaton, Acc Chem. Res., 21, 300 (1988).
31. M. Hoshino, M. Imamura, K. Ikehara and Y. Hama, J. Phys. Chem.,85, 1820 (1981).
32. K. A. Al-Hassan, U. K. A. Klein and A. Suwaiyan, Chem. Phys. Lett.,212, 581 (1993).
33. D. W. Cho, Y. H. Kim, S. G. Kong, M. Yoon and D. Kim, J. Chem.Soc. Faraday Trans., 92, 29 (1996).
34. H. A. Benesi and J. H. Hildebrand, J. Am. Chem. Soc., 71, 2703(1949).
35. J. Szejili and T. Osa, Pergamon Press Oxford, 3, 253 (1996).
36. L. Chandrabose, S. Krishnamoorthy and R. Rajaram, J. Macromol.Sci. Part A., 54, 402 (2017).
37. R. Rajaram, M. Sonaimuthu, A. Sekar, C. Eun Ha, M. Fatiha, L.Neour and L. Yong Rok, J. Mol. Liq., 366, 120297 (2022).
38. A. Saxena, G. Tewari and S. A. Saraf, Braz. J. Pharm. Sci., 47, 887(2011).
39. W. Zielenkiewicz, M. Kozbiał, B. Golankiewicz and J. Poznanski, J.Therm. Anal. Cal., 101, 555 (2010).
40. P. R. Von, C. Sepulveda Carreno, J. Rodriguez-Baeza and J. B.Alderete, Química Nova, 23, 749 (2000).
41. T. Loftsson, K. Matthiasson and M. Masson, Int. J. Pharm., 262,101 (2003).
42. H. M. Marques, J. Hadgraft and I. W. Kellaway, Int. J. Pharm., 63,259 (1990).
43. R. Periasamy, R. Rajamohan, S. Kothainayaki and K. Sivakumar, J.Mol. Str., 1068, 155 (2014).
44. R. Rajaram, M. Sonaimuthu, A. Sekar, M. Fatiha, L. Neour, M.Kuppusamy and L. Yong Rok, J. Pharm. Biomed. Anal., 221, 115057(2022).
45. G. Narayanan, R. Boy, B. S. Gupta and A. E. Tonelli, Polymer Testing, 62, 402 (2017).
46. P. Mura, J. Pharm. Biomed. Anal., 113, 226 (2015).
47. S. Uppal, K. Kaur, N. Rajendra Kumar, K. Rachna Singh and S. K.Mehta, Ultrason Sonochem., 39, 25 (2017).
48. H. M. Marques, J. Hadgraft and I. W. Kellaway, Int. J. Pharm., 63,259 (1990).
49. D. Schneidman-Duhovny, I. Yuval, N. Ruth and H. J. Wolfson, Nuc.Acids Res., 33, 363 (2005).
50. M. L. Connolly, Science, 221, 709 (1983)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로