Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received November 28, 2022
Revised December 22, 2022
Accepted December 23, 2022
- Acknowledgements
- This research was supported by the National Research Foundation of Korea (NRF) (NRF-2021R1A2C2005856 and RS-2022- 00144163) and Research Institute of Industrial Science & Technology, Korea (2022H005). This research was also supported by the Carbon Neutral Institute Research Fund (Project # 1.220095.01) of UNIST
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Guest distributions and dissociation enthalpy of fluorinated gas (CHF3 or C2F6)+N2 hydrates for hydrate-based gas separation
Abstract
Fluorinated gases (F-gases), such as CHF3 and C2F6, which are used in the semiconductor industry and
have considerable global warming potential, can be recovered after use through a gas hydrate-based separation method
to prevent their release into the atmosphere. In this study, the guest distributions and dissociation enthalpy (Hd) of Fgas (CHF3 or C2F6)+N2 hydrates with different F-gas concentrations (CHF3: 20%, 80%, and 100% and C2F6: 20%, 60%,
80%, and 100%) were experimentally investigated using a powder X-ray diffractometer and a high-pressure micro-differential scanning calorimeter, respectively. At high N2 concentrations in the feed gas, the occupancy of N2 in the small
(512) cages of the F-gas+N2 hydrates increased significantly. As a result, the F-gas+N2 hydrates exhibited reduced hydration numbers at high N2 concentration. The Hd values (in kJ/mol gas) of the F-gas (CHF3 or C2F6)+N2 hydrates
decreased with increased N2 concentration. The overall experimental results provide useful insights into the design and
operation of gas hydrate-based F-gas separation processes
References
2. E. D. Sloan and C.A . Koh, Clathrate hydrates of natural gases, 3rd ed., CRC Press, Boca Raton, FL (2008).
3. J. S. Gudmundsson, M. Parlaktuna and A. A. Khokhar, SPE Prod.Eng., 9, 69 (1994).
4. T. Sugahara, S. Murayama, S. Hashimoto and K. Ohgaki, Fluid Phase Equilib., 233, 190 (2005).
5. H. Lu, Y. Tsuji and J. A. Ripmeester, J. Phys. Chem. B, 111, 14163(2007).
6. T. A. Strobel, C. A. Koh and E. D. Sloan, Fluid Phase Equilib., 261,382 (2007).
7. E. Kim, S. Lee, J. D. Lee and Y. Seo, Chem. Eng. J., 267, 117 (2015).
8. E. Kim, S. Lee, J. D. Lee and Y. Seo, Fuel, 164, 237 (2016).
9. H. D. Nagashima and R. Ohmura, J. Chem. Thermodyn., 102, 252(2016).
10. G. Bhattacharjee, V. Barmecha, O. S. Kushwaha and R. Kumar, J.Chem. Thermodyn., 117, 248 (2018).
11. A. Adeyemo, R. Kumar, P. Linga, J. A. Ripmeester and P. Englezos,Int. J. Greenhouse Gas Control, 4, 478 (2010).
12. A. Eslaminanesh, A. H. Mohammadi, D. Richon, P. Naidoo and D.Ramjugernath, J. Chem. Thermodyn., 46, 62 (2012).
13. P. Babu, R. Kumar and P. Linga, Energy, 50, 364 (2013).
14. S. Park, S. Lee, Y. Lee, Y. Lee and Y. Seo, Int. J Greenhouse Gas Control, 14, 193 (2013).
15. S. Park, S. Lee, Y. Lee and Y. Seo, Environ. Sci. Technol., 47, 7571(2013).
16. Y. Lee, S. Moon, S. Hong, S. Lee and Y. Park, Chem. Eng. J., 389,123749 (2020).
17. S. Kim, G. Ko, K. S. Kim and Y. Seo, J. Chem. Thermodyn., 142,106024 (2020).
18. R. A. Kini, S. F. Dec and E. D. Sloan, J. Phys. Chem. A, 108, 9550(2004).
19. T. Maekawa, Fluid Phase Equilib., 243, 115 (2006).
20. L. J. Rovetto, K. E. Bowler, L. L. Stadterman, S. F. Dec, C. A. Koh and E. D. Sloan, Fluid Phase Equilib., 261, 407 (2007).
21. S. Lee, Y. Lee, S. Park, Y. Kim, I. Cha and Y. Seo, J. Chem. Thermodyn., 65, 113 (2013).
22. J. Lee, Y. K. Jin and Y. Seo, Chem. Eng. J., 338, 572 (2018).
23. J. Lee, K. S. Kim and Y. Seo, Chem. Eng. J., 375, 121974 (2019).
24. Y. Seo, H. Tajima, A. Yamasaki, S. Takeya, T. Ebinuma and F. Kiyono, Environ. Sci. Technol., 38, 4635 (2004).
25. I. Cha, S. Lee, J. D. Lee, G. Lee and Y. Seo, Environ. Sci. Technol.,44, 6117 (2010).
26. E. Kim, E. Shin, G. Ko, S. H. Kim, O. H. Han, S. K. Kwak and Y. Seo,Chem. Eng. J., 306, 298 (2016).
27. E. Kim, G. Ko and Y. Seo, ACS Sust. Chem. Eng., 5, 5485 (2017).
28. E. Kim, G. Ko and Y. Seo, J. Chem. Thermodyn., 117, 43 (2018).
29. G. Ko and Y. Seo, Environ. Sci. Technol., 53, 12945 (2019).
30. G. Ko and Y. Seo, Chem. Eng. J., 400, 125973 (2020).
31. W. Choi, Y. Lee, J. Mok, S. Lee, J. D. Lee and Y. Seo, Chem. Eng. J.,358, 598 (2019).
32. K. Park, S. Y. Hong, J. W. Lee, K. C. Kang, Y. . Lee, M. Ha and J. D.Lee, Desalination, 274, 91 (2011).
33. K. C. Kang, P. Linga, K. Park, S. Choi and J. D. Lee, Desalination,353, 84 (2014).
34. J. Zhang, M. Yang, Y. Liu, D. Wang and Y. Song, J. Chem. Thermodyn., 104, 9 (2017).
35. S. Han, Y. W. Rhee and S. P. Kang, Desalination, 404, 132 (2017).
36. M. N. Khan, C. J. Peters and C. A. Koh, Desalination, 468, 114049(2019).
37. S. D. Seo, S. Y. Hong, A. K. Sum, K. H. Lee, J. D. Lee and B. R. Lee,Chem. Eng. J., 370, 980 (2019).
38. Y. P. Handa, J. Chem. Thermodyn., 18, 915 (1986).
39. E. D. Sloan and F. Fleyfel, Fluid Phase Equilib., 76, 123 (1992).
40. Y. Lee, S. Lee, J. Lee and Y. Seo, Chem. Eng. J., 246, 20 (2014).
41. G. K. Anderson, J. Chem. Thermodyn., 35, 1171 (2003).
42. J. Mok, J. Lim, W. Choi, S. Yun, J. Lee, G. Ko and Y. Seo, Phys.Chem. Chem. Phys., 23, 15693 (2021).