Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received November 6, 2022
Revised January 7, 2023
Accepted January 31, 2023
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Towards improved removal of multicomponent from wastewater using a predefined multistage direct pass of reverse osmosis
Abstract
The vast growth of the manufacturing world is producing a massive amount of wastewater from a wide
range of industrial applications disposed into surface water. Undoubtedly, these effluents contain a variety of high-toxic
compounds that pose a real challenge and dislocate the environment. The reverse osmosis (RO) process is recognized
as a superior method due to its reliability in generating a roughly pure reuse water at a plausible cost. However, the literature has a shortage of comprehensive studies to simultaneously eliminate organic and non-organic compounds from
wastewater using a predefined multi stage direct pass operation of a spiral wound module of RO process. To systematically carry out this, a mathematical model developed by the same author has been modified to critically predict the
efficiency of RO process towards the simultaneous removal of multi-component from wastewater. For this system, the
simulation introduces realistic operating circumstances that correspond to a high rejection of the targeted chemicals.
By optimizing the design operating conditions, the accompanying treatment process' consistency and effectiveness are
also increased. As a result, there was a noticeable decline in the unintended release of the harmful substances into the
recycled water within a fixed specific energy consumption.
Keywords
References
2. M. Al-Obaidi, C. Kara-Zaitri and I. M. Mujtaba, Wastewater treatment by reverse osmosis process, CRC Press (2020).
3. T. Fujioka, K. P. Ishida, T. Shintani and H. Kodamatani, Water Res.,131, 45 (2018).
4. K. Madwar and H. Tarazi, Desalination, 152(1-3), 325 (2003).
5. A. J. Toth, Membranes, 10(10), 265 (2020).
6. R. W. Baker, Membrane technology and applications, 2nd ed. Membrane Technology and Research, Inc. California (2004).
7. N. Al-Bastaki, Chem. Eng. Process., 43, 1561 (2004).
8. A. L. Ahmad, M. F. Chong and S. Bhatia, Chem. Eng. J., 132(1-3),183 (2007).
9. J. H. Al-Rifai, H. Khabbaz and A. I. Schäfer, Sep. Purif. Technol.,77(1), 60 (2011).
10. T. Fujioka, S. J. Khan, J. A. McDonald, A. Roux, Y. Poussade, J. E.Drewes and L. D. Nghiem, Water Res., 47(16), 6141 (2013).
11. L. Wang, Y. Sun and B. Chen, Water Res., 144, 383 (2018).
12. M. A. Al-Obaidi, C. Kara-Zaïtri and I. M. Mujtaba, Comput. Aided Chem. Eng., 44, 1867 (2018).
13. J. M. Domingos, G. A. Martinez, E. Morselli, S. Bandini and L.Bertin, Sep. Purif. Technol., 290, 120840 (2022).
14. G. Filippini, M. A. Al-Obaidi, F. Manenti and I. M. Mujtaba, Desalination, 448, 21 (2018).
15. M. A. Al-Obaidi, G. Filippini, F. Manenti and I. M. Mujtaba, Desali-nation, 456, 136 (2019).
16. R. Maleki, N. Koukabi and E. Kolvari, Appl. Organomet. Chem.,32(1), e3905 (2018).
17. A. A. Gami, M. Y. Shukor, K. A. Khalil, F. A. Dahalan, A. Khalid
and S. A. Ahmad, J. Environ. Microbiol. Toxicol., 2(1), 11 (2014).
18. A. Bódalo, J. L. Gómez, E. Gómez, G. León and M. Tejera, Desalination, 168, 277 (2004).
19. A. M. Hidalgo, G. León, M. Gómez, M. D. Murcia, M. D. Bernal and S. Ortega, Environ. Technol., 35(9), 1175 (2014).
20. A. Bódalo, J. L. Gómez, E. Gómez, G. León and M. Tejera, Desalination, 184, 149 (2005).
21. G. Srinivasan, S. Sundaramoorthy and D. V. R. Murthy, Am. J. Eng.Appl. Sci., 3(1), 31 (2010).
22. S. Sundaramoorthy, G. Srinivasan and D. V. R. Murthy, Desalination, 277(1-3), 257 (2011).
23. M. A. Al-Obaidi, C. Kara-Zaïtri and I. M. Mujtaba, J. Clean. Prod.,193, 140 (2018).
24. M. A. Al-Obaidi, C. Kara-Zaitri and I. M. Mujtaba, J. Environ. Chem.Eng., 6(4), 4797 (2018).
25. A. Bódalo, J. L. Gómez, E. Gómez, G. León and M. Tejera, Desalination, 162, 55 (2003).
26. M. Wilf and K. Klinko, Desalination, 138(1-3), 299 (2001).
27. D. L. Sedlak, R. A. Deeb, E. L. Hawley, W. A. Mitch, T. D. Durbin,S. Mowbray and S. Carr, Water Environ. Res., 77(1), 32 (2005).
28. G. Srinivasan, S. Sundaramoorthy and D. R. Murthy, Desalination,281, 199 (2011).
29. Y. Cui, X. Y. Liu, T. S. Chung, M. Weber, C. Staudt and C. Maletzko,Water Res., 91, 104 (2016).
30. A. J. Karabelas, C. P. Koutsou, M. Kostoglou and D. C. Sioutopoulos, Desalination, 431, 15 (2018).
31. T. Fujioka, L. D. Nghiem, S. J. Khan, J. A. McDonald, Y. Poussade and J. E. Drewes, J. Membr. Sci., 409, 66 (2012).
32. Z. Wang, A. Deshmukh, Y. Du and M. Elimelech, Water Res., 170,115317 (2020).
33. K. Li, L. Liu, H. Wu, S. Li, C. Yu, Y. Zhou, W. Huang and D. Yan,Phys. Chem. Chem. Phys., 20(47), 29996 (2018).
34. C. P. Koutsou, E. Kritikos, A. J. Karabelas and M. Kostoglou, Desalination, 476, 114213 (2020).
35. A. Abbas, Chem. Eng. Process.: Process Intensification, 44(9), 999(2005).
36. M A. Al-Obaidi, C. Kara-Zaitri and I. M. Mujtaba, J. Environ. Chem.Eng., 6(4), 4797 (2018).