Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received September 19, 2022
Revised January 7, 2023
Accepted January 31, 2023
- Acknowledgements
- Vikneswary Rajendaren would like to express her gratitude to the Universiti Malaysia Pahang for sponsoring her Ph.D. study under the UMP Doctoral Research Scheme (DRS)
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Effect of spinning parameter on the properties and performance of hollow fiber supported liquid membrane for levulinic acid extraction
Abstract
A hollow fiber-supported liquid membrane (HFSLM) configuration with a large membrane surface area
per volume is becoming more viable and feasible to use on an industrial scale. However, the hollow fiber (HF) forms a
thicker skin outer layer than its flat-sheet equivalents, resulting in lower membrane fluxes and more unsatisfactory performance. Therefore, this study investigated the effect of HF spinning parameters such as bore liquid type, air gap distance (3-12 cm), and air relative humidity (64-100 wt%) on the properties and performance of HFSLM for levulinic
acid (LA) extraction. The HF membranes were characterized in terms of morphology, contact angle, porosity, and
membrane tensile strength. Polyethersulfone-based HF membrane prepared using 60% v/v dimethylacetamide as bore
liquid at 6 cm air gap distance and 86% air relative humidity resulted in the highest LA extraction of 72.2%. The membrane had a dual symmetric finger-like structure with an open porous structure. The value of the outer fiber surface
contact angle, porosity, and tensile stress was 94.1o
, 77.57%, and 1,524.7 kPa, respectively. An optimal spinning condition is crucial in producing the best HF structure for improving the HFSLM performance in LA extraction.
References
2. X. Lin, Q. Huang, G. Qi, S. Shi, L. Xiong, C. Huang, X. Chen, H.Li and X. Chen, Sep. Purif. Technol., 174, 222 (2017).
3. A. E. Tugtas, Fen Bilimleri Dergisi, 23, 70 (2011).
4. V. Rajendaren, S. M. S. M. Saufi, M. A. K. A. K. Zahari, A. W.Mohammad and A. Wahab, Mater. Today Proc., 17, 1117 (2019).
5. V. Rajendaren, S. M. Saufi, M. A. K. M. Zahari, N. Othman and R. N. R. Sulaiman, Korean J. Chem. Eng., 38, 2519 (2021).
6. A. Didi and M. A. Didi, Sci. Study Res., X2, 149 (2009).
7. V. S. Kislik, Liquid Membranes, Principles and Applications in Chemical Separations & Wastewater Treatment (2009).
8. T. Wongsawa, N. Leepipatpiboon, N. Thamphiphit and U. Pancharoen, Chem. Eng. J., 222, 361 (2013).
9. Y. Liu, G. H. Koops, and H. Strathmann, J. Membr. Sci., 223, 187(2003).
10. A. F. Ismail, M. I. Mustaffar, R. M. Illias and M. S. Abdullah, Sep.Purif. Technol., 49, 10 (2006).
11. F. Korminouri, M. Rahbari-Sisakht, D. Rana, T. Matsuura and A. F.Ismail, Sep. Purif. Technol., 132, 601 (2014).
12. N. Said, H. Hasbullah, A. Fauzi, M. Nidzhom, A. F. Ismail, M.Nidzhom, Z. Abidin, P. Sean and M. H. Dzarfan, Chem. Eng.Trans., 56, 1591 (2017).
13. A. L. Ahmad, Z. Mohamad and H. Mohd, J. Phys. Sci., 28, 185(2017).
14. M. Khayet, Chem. Eng. Sci., 58, 3091 (2003).
15. N. Ismail, A. Venault, J. Mikkola, D. Bouyer, E. Drioli and N. T. H.Kiadeh, J. Membr. Sci., 597, 117601 (2020).
16. Y. Gencal, E. N. Durmaz and P. Z. Culfaz-emecen, J. Membr. Sci.,476, 224 (2015).
17. F. A. AlMarzooqi, M. Roil Bilad and H. Ali Arafat, Appl. Sci., 7,181 (2017).
18. N. Harruddin, S. M. Saufi, C. K. M. Faizal and A. W. Mohammad,RSC Adv., 8, 25396 (2018).
19. S. Sanmugam, N. Harruddin and S. M. Saufi, Chem. Eng. Res. Bull.,19, 118 (2017).
20. Q. F. Alsalhy, H. A. Salih, S. Simone, M. Zablouk, E. Drioli and A.Figoli, Desalination, 345, 21 (2014).
21. Y. Manawi, V. Kochkodan, E. Mahmoudi, D. J. Johnson, A. W.Mohammad and M. A. Atieh, Sci. Rep., 7, 1 (2017).
22. D. Li, R. Wang and T.-S. Chung, Sep. Purif. Technol., 40, 15 (2004).
23. A. J. B. Kemperman, D. Bargeman, Th. van den Boomgaard and H. Strathmann, Sep. Sci. Technol., 31, 2733 (1996).
24. A. Kumar and A. M. Sastre, Ind. Eng. Chem. Res., 39, 146 (2000).
25. N. S. Rathore, J. v. Sonawane, A. Kumar, A. K. Venugopalan, R. K.Singh, D. D. Bajpai and J. P. Shukla, J. Membr. Sci., 189, 119(2001).
26. R. Güell, E. Antic, V. Salvad and C. Fontàs, Sep. Purif. Technol., 62,389 (2008).
27. T. Pirom, N. Sunsandee, P. Ramakul, U. Pancharoen, K. Nootong and N. Leepipatpiboon, J. Ind. Eng. Chem., 23, 109 (2015).
28. A. Idris, N. Mat Zain and M. Y. Noordin, Desalination, 207, 324(2007).
29. Y. Bang, M. Obaid, M. Jang, J. Lee, J. Lim and I. S. Kim, Chemosphere, 259, 127467 (2020).
30. C. Cao, T. S. Chung, S. B. Chen and Z. J. Dong, Chem. Eng. Sci.,59, 1053 (2004).
31. K. Y. Wang, D. F. Li, T. S. Chung and S. B. Chen, Chem. Eng. Sci.,59, 4657 (2004).
32. T. H. Young and L. W. Chen, Desalination, 103, 233 (1995).
33. D. Y. Guo, C. H. Li, L. M. Chang, H. C. Jau, W. C. Lo, W. C. Lin,C. T. Wang and T. H. Lin, Polymers (Basel), 12, 1 (2020).
34. R. W. Baker, Membrane technology and applications, John Wiley &Sons, Ltd, Chichester, UK (2004).
35. E. Fontananova, V. Cucunato, E. Curcio, F. Trotta, M. Biasizzo andG. Barbieri, Electrochim. Acta, 66, 164 (2012).
36. C. Meringolo, T. F. Mastropietro, T. Poerio, E. Fontananova, G. de Filpo, E. Curcio and G. di Profio, ACS Sustain. Chem. Eng., 6,10069 (2018).
37. C. Fontas, R. Tayeb, S. Tingry, M. Hidalgo and P. Seta, J. Membr.Sci., 263, 96 (2005).
38. A. Ito, J. Membr. Sci., 175, 35 (2000).
39. N. A. Ahmad, C. P. Leo, A. L. Ahmad and W. K. W. Ramli, Sep.Purif. Rev., 44, 109 (2015).
40. E. Nagy, in Basic equations of mass transport through a membrane layer, edited by K. Marinakis, 2nd ed., Susan Dennis, Hungary,185 (2019).
41. N. Harruddin, S. M. Saufi, C. K. M. Faizal and A. W. Mohammad,Chem. Eng. Trans., 56, 847 (2017)