ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received November 12, 2022
Revised February 15, 2023
Accepted February 21, 2023
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Crystal engineering of quercetin via combined adsorption of polyvinylpyrrolidone and tannin

1Department of Chemical Engineering and Materials Science, Chung-Ang University, Seoul 06974, Korea 2Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
jong@cau.ac.kr
Korean Journal of Chemical Engineering, July 2023, 40(7), 1760-1766(7), 10.1007/s11814-023-1401-7
downloadDownload PDF

Abstract

In nature, the structures and properties of biominerals are frequently precisely and synergistically controlled by two types of additives. However, the combination of two different types of additives has not often been thoroughly examined in the context of chemical, pharmaceutical, and biological crystallization. A combination of a polymeric additive, polyvinylpyrrolidone (PVP), and a low-molecular-weight additive, tannin (TA), was employed to explore the potential for crystal engineering with quercetin as an active compound. The nucleation time was significantly decreased by the additives, and the resulting crystals contained significant amounts of PVP and TA. FTIR spectroscopy analysis was used to confirm the specific molecular interaction between quercetin, PVP, and TA, and the results were consistent with the results of broadened peaks of XRPD, which indicated decreased particle size and aspect ratio. The melting point of quercetin was significantly depressed as the heat of fusion decreased. When two or more additives are combined, it is possible to obtain crystals with properties and structures that cannot be obtained by reg

References

1. H. Choi, H. Lee, M. K. Lee and J. Lee, J. Pharm. Sci., 101, 2941 (2012).
2. S.-H. Lee, G.-H. Lee, K.-H. Lee, M. Jazbinsek, B. J. Kang, F. Rotermund and O.-P. Kwon, Cryst. Growth Des., 16, 3555 (2016).
3. Z. X. Ting and L. J. Yan, Macromol. Res., 30, 325 (2022).
4. R.-Q. Song and H. Cölfen, Cryst. Eng. Comm., 13, 1249 (2011).
5. E. Kim, S. Agarwal, N. Kim, F. S. Hage, V. Leonardo, A. Gelmi and M. M. Stevens, ACS Nano, 13, 2888 (2019).
6. S. Mann, B. R. Heywood, S. Rajam and J. D. Birchall, Nature, 334,692 (1988).
7. G. Falini, S. Manara, S. Fermani, N. Roveri, M. Goisis, G. Manganelli and L. Cassar, Cryst. Eng. Comm., 9, 1162 (2007).
8. E. Pouget, E. Dujardin, A. Cavalier, A. Moreac, C. Valéry, V. Marchi-Artzner, T. Weiss, A. Renault, M. Paternostre and F. Artzner,Nat. Mater., 6, 434 (2007).
9. S. Xu, D. Cao, Y. Liu and Y. Wang, Cryst. Growth Des., 22, 2001(2021).
10. S. Karthika, T. Radhakrishnan and P. Kalaichelvi, Cryst. Growth Des., 16, 6663 (2016).
11. H. Pyles, S. Zhang, J. J. De Yoreo and D. Baker, Nature, 571, 251(2019).
12. X. Zhang, J. Wang, F. Yu, X. Cheng, Y. Hao, Y. Liu, X. Huang, T.Wang and H. Hao, Cryst. Eng. Comm., 24, 854 (2022).
13. O.-P. Kwon, S.-J. Kwon, M. Jazbinsek, A. Choubey, P. A. Losio, V.Gramlich and P. Günter, Cryst. Ggrowth Des., 6, 2327 (2006).
14. B. Ni, G. Gonzalez-Rubio and H. Cölfen, Acc. Chem. Res., 55, 1599(2022).
15. D. S. Frank, Q. Zhu and A. J. Matzger, Mol. Pharm., 16, 3720 (2019).
16. C. P. Price, A. L. Grzesiak and A. J. Matzger, J. Am. Chem. Soc., 127,5512 (2005).
17. T. Munk, S. Baldursdottir, S. Hietala, T. Rades, S. Kapp, M. Nuopponen, K. Kalliomaki, H. Tenhu and J. Rantanen, Mol. Pharm., 9,1932 (2012).
18. H. Fan, L. Wang, X. Feng, Y. Bu, D. Wu and Z. Jin, Macromol. Res.,50, 666 (2017).
19. G. S. Kelly, Quercetin, Altern. Med. Rev., 16, 172 (2011).
20. H. Kim, J. Kim, O.-P. Kwon and J. Lee, Macromol. Res., 28, 1276(2020).
21. C. A. Kadar, M. Faisal, N. Maruthi, N. Raghavendra, B. Prasanna and S. Manohara, Macromol. Res., 30, 638 (2022).
22. K. Ibtehaj, M. H. H. Jumali, S. Al-Bati, P. C. Ooi, B. A. Al-Asbahi and A. A. A. Ahmed, Macromol. Res., 30, 172 (2022).
23. S. Kang, H. Kwon, J. Jeong, Y.-C. Kim and J. Park, Macromol. Res.,30, 454 (2022).
24. C. J. Schram, S. P. Beaudoin and L. S. Taylor, Langmuir, 31, 171(2015).
25. E. Bouchaud and M. Daoud, Journal de Physique, 48, 1991 (1987).
26. P. Somasundaran and L. Huang, Adv. Colloid Interface Sci., 88, 179 (2000).
27. P. Hamilton, D. Littlejohn, A. Nordon, J. Sefcik and P. Slavin, Analyst, 137, 118 (2012).
28. U. Holzwarth and N. Gibson, Nat. Nanotechnol., 6, 534 (2011).
29. W.-H. Chang, P.-Y. Liu, D.-E. Lin, Y.-T. Jiang, C.-J. Lu and Y.-H. H.Hsu, Macromol. Res., 30, 6 (2022).
30. S. Mehmood, H. Yu, L. Wang, M. A. Uddin, B. U. Amin, F. Haq, S.Fahad and M. Haroon, Macromol. Res., 30, 623 (2022).
31. H. J. Kim, K. H. Kim, Y. S. Han, Y.-J. Kim and H. M. Lee, Macromol. Res., 28, 1276 (2022).
32. Y. H. Lee, S. Y. Park, Y. J. Hwang and J. K. Park, Macromol. Res., 30,90 (2022).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로