ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received December 1, 2022
Revised February 3, 2023
Accepted February 5, 2023
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Investigation on the adsorption performance of modified coal gangues to p-hydroxybenzenesulfonic acid

College of Materials Science & Engineering, Xi’an University of Science and Technology, Xi’an, 710054, China
Korean Journal of Chemical Engineering, July 2023, 40(7), 1767-1774(8), 10.1007/s11814-023-1436-9
downloadDownload PDF

Abstract

Coal gangue (CG) has dense structure and excellent internal crystallization. After modification, its pore structure can be enlarged and become an adsorptive material with good adsorption performance, which is a good idea to recover solid waste of CG to a certain extent. At the same time, the content of organic matter in the wastewater of medical intermediate is high. Modified CG can be used as an ideal material for the adsorption treatment of medical intermediate wastewater. Herein, the CG was treated with three activation methods of high-temperature calcination, freezing microwave and acidification treatment to investigate their adsorption behavior to p-hydroxybenzenesulfonic acid. SEM, FTIR, XRD, XPS and BET were used to study the microstructure of raw and modified CG. The relationship between the activation methods and the structure of the CGs was established. The specific surface area of calcined CG increases obviously, which is attributed to the elimination of interlayer water. Acidification treatment can effectively activate the chemical structure of CG surface. By using ultraviolet spectrophotometer, both the kinetics and thermodynamics of the adsorption processes are investigated and fitted with the kinetic equations and adsorption thermodynamic equations. Results indicate that the CG treated with acidification method has the best adsorption effect on p-hydroxybenzenesulfonic acid, and the maximum removal rate reaches 85.34%. The quasi-second-order rate equation and Freundlich model are adopted to analyze the adsorption kinetics and thermodynamics, and results show that the adsorption process includes both physical adsorption and chemisorption. Overall, the relationships of activation method-microstructure-adsorption performance are revealed, which is significant to guide the application of CG in the adsorption field

References

1. Q. Lu, X. F. Dong, Z. W. Zhu and Y. C. Dong, J. Hazard. Mater.,273, 136 (2014).
2. Y. L. Huang, J. M. Li, D. Ma, H. D. Gao, Y. C. Guo and S. Y. Ouyang, Total Environ., 693, 133607 (2019).
3. B. Jablonska, A. V. Kityk, M. Busch and P. Huber, J. Environ. Manage., 190, 80 (2017).
4. M. Zhou, Y. W. Dou, Y. Z. Zhang, Y. Q. Zhang and B. Q. Zhang,Constr. Build Mater., 220, 386 (2019).
5. L. P. Zhang, A. L. Chen, H. B. Qu, S. Q. Xu, X. Zhang and X. W.He, Water Sci. Technol., 72, 1940 (2015).
6. Y. X. Guo, K. Z. Yan, L. Cui and F. Q. Cheng, Powder Technol., 302,33 (2016).
7. J. Geng, M. Zhou, T. Zhang, W. Wang, T. Wang, X. Zhou, X.Wang and H. Hou, Mater. Struct., 50, 1 (2017).
8. Y. C. Hu, W. Q. Liu, Y. D. Yang, M. Y. Qua and H. L. Li, Chem.Eng. J., 359, 604 (2019).
9. Z. Zhang, V. V. Pendin, W. J. Feng and Z. Q. Zhang, Sci. Cold Arid.Reg., 7, 199 (2015).
10. F. Q. Gan, J. M. Zhou, H. Y. Wang, C. W. Du and X. Q. Chen, Water Res., 43, 2907 (2009).
11. F. Haghseresht, S. B. Wang and D. D. Do, Appl. Clay Sci., 46, 369(2009).
12. S. L. Tian, P. X. Jiang, P. Ning and Y. H. Su, Chem. Eng. J., 151, 141(2009).
13. B. B. Qiu and F. Duan, Colloid Surf. A, 571, 86 (2019).
14. L. Zhou, H. J. Zhou, Y. X. Hu, S. Yan and J. L. Yang, J. Environ. Manage., 234, 245 (2019).
15. X. L. Sun, L. Zhang, Z. X. Xie, B. Li and S. Y. Liu, J. Surfactants Deterg., 24, 269 (2021).
16. U. T. Gonzenbach, A. R. Studart, E. Tervoort and L. J. Gauckler, J.Am. Ceram. Soc., 90, 16 (2007).
17. H. B. Zhao, T. Wang, H. Zhang, Y. Li and Z. Q. Wei, J. Pet. Sci.Eng., 174, 553 (2019).
18. F. X. Song, N. Wang, Z. Z. Hu, Z. Zhang, X. X. Mai, W. B. Jie and L. Bin, Appl. Water Sci., 11, 1 (2021).
19. B. K. Aziz, Dler M. Salh SHwan and S. Kaufhold, Silicon, 14, 893(2022).
20. T. Xiong, X. Z. Yuan, H. Wang, Z. B. Wu and L. B. Jiang, Chem.Eng. J., 366, 83 (2019).
21. W. X. Zhu, H. Song, C. M. Jia and S. Yao, J. Cent. South Univ., 21,2832 (2014).
22. S. Yan, P. G. He, D. C. Jia, Q. G. Wang, J. J. Liu, J. L. Yang and Y.Huang, Int. J. Appl. Ceram. Technol., 15, 1602 (2018).
23. H. Zhou, M. S. Zhang and S. F. Sun, Sci. Adv. Mater., 13, 2157(2021).
24. R. Mohammadi, A. Azadmehr and A. Maghsoudi, Sep. Sci. Technol., 55, 3343 (2020).
25. S. Yan, F. Y. Zhang, L. Wang, Y. D. Rong, P. G. He and D. C. Jia, J.Environ. Manage., 246, 174 (2019).
26. Y. B. Zhang, Y. T. Zhang, X. Q. Shi, Y. Q. Li and X. D. Zhang, Fuel,315, 123275 (2022).
27. X. L. Wang and Y. Zhang, Sci. Adv. Mater., 11, 277 (2019).
28. J. M. Li, Y. L. Huang, W. Li and Y. C. Guo, J. Clean Prod., 329,129756 (2021).
29. O. S. Nuri, M. Irannajad and A. Mehdilo, J. Mol. Liq., 291, 111311(2019).
30. M. Manono, K. Corin and J. Wiese, Minerals, 9, 231 (2019).
31. S. Ahmadzadeh, A. Asadipour and M. Yoosefian, Desalin. Water Treat., 92, 160 (2017).
32. D. M. Salh, B. K. Aziz and S. Kaufhold, Silicon, 12, 87 (2020).
33. G. Z. Nie, S. J. Qiu, X. Wang, Y. Du and Q. R. Zhang, Chinese Chem.Lett., 32, 2342 (2021).
34. H. K. Zhang, X. R. Zhang, J. F. Liu and L. M. Zhang, J. Environ.Manage., 314, 115044 (2022).
35. M. M. Fawzy, H. M. Salem and A. H. Orabi, Hydrometallurgy, 213,105940 (2022).
36. B. Jabłońska, A. V. Kityk, M. Busch and P. Huber, J. Environ. Manage., 190, 80 (2017).
37. R. Mohammadi, A. Azadmehr and A. Maghsoudi, J. Environ. Chem.Eng., 9, 105003 (2021).
38. Y. Wu, Z. J. Wu, K. Liu, F. Li, Y. J. Pang and J. B. Zhang, Korean J.Chem. Eng., 37, 1786 (2020).
39. R. Mohammadi, A. Azadmehr and A. Maghsoudi, J. Environ. Chem.Eng., 7, 103494 (2019).
40. G. T. H. Ooi, K. Tang, R. K. Chhetri, K. M. S. Kaarsholm and K.Sundmark, Bioresour. Technol., 267, 677 (2018).
41. N. J. Bu, X. M. Liu, S. L. Song, J. H. Liu and Q. Zhen, Adv. Powder Technol., 31, 2699 (2020).
42. Z. M. Puyen, E. Villagrasa, J. Maldonado, E. Diestra and I. Esteve,Bioresour. Technol., 126, 233 (2012).
43. J. M. Zhu, S. H. Guo and X. H. Li, RSC Adv., 5, 103656 (2015).
44. H. D. Qin, R. Xiao, R. H. Zhang and J. Chen, Water Sci. Technol.,2017, 686 (2018).
45. J. M. Zhou, Y. S. Fu, M. Y. Zhang, Y. Q. Liu, S. H. Ding and L. Zhao,Desalin. Water Treat., 211, 229 (2021).
46. M. Han, Z. W. Zhao, W. Gao and F. Y. Cui, Bioresour. Technol., 145,17 (2013).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로