ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received January 17, 2023
Revised February 14, 2023
Accepted February 28, 2023
Acknowledgements
This study was supported by the Research Program funded by the SeoulTech (Seoul National University of Science and Technology).
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Membraneless enzymatic biofuel cells using three-dimensional graphite felt electrodes

1Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea 2Energy & Environment Research Institute, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea 3Department of Energy and Chemical Engineering, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul 01811, Korea
kwony@seoultech.ac.kr
Korean Journal of Chemical Engineering, July 2023, 40(7), 1775-1782(8), 10.1007/s11814-023-1409-z
downloadDownload PDF

Abstract

Membraneless enzymatic biofuel cells (EBFCs) have the potential to be used in biocompatible devices, such as implantable or wearable devices. However, they face challenges due to low reaction surface area and high resistance attributed to large particle size and protein composition of enzyme catalysts used. In this study, to improve the performance of membraneless EBFCs, three-dimensional graphite felt (3D-GF) electrode was utilized. The 3D-GF electrode has high electrical conductivity and large surface area, allowing the large loading of catalytic components and increasing the reactivity of redox reaction required for EBFC operation. Membraneless EBFC using the 3D-GF electrode is prepared with anodic catalyst including glucose oxidase (GOx) and tetrathiafulvalene mediator, and cathodic catalyst of horseradish peroxidase and GOx. The outermost layer of 3D-GF electrode is coated with gelatin crosslinked by glutaraldehyde to prevent leaching of components of catalysts. According to evaluations, both anodic and cathodic catalysts are evenly distributed on 3D-GF electrode, and anodic and cathodic currents of 103.5 and 68.7 A at 0.3 V vs. Ag/ AgCl are measured. Additionally, EBFCs using the optimized electrodes demonstrate high power output of 82 W in a small cell kit size of 1.5×1.5×1.5 cm3 , with excellent design flexibility

References

1. M. Mohammadi, M. Sedighi, R. Natarajan, S. H. A. Hassan and M. Ghasemi, Korean J. Chem. Eng., 38, 72 (2021).
2. O. Z. Sharaf and M. F. Orhan, Renew. Sustain. Energy Rev., 32, 810(2014).
3. S. Cosnier, A. J. Gross, F. Giroud and M. Holzinger, Curr. Opin. Electrochem., 12, 148 (2018).
4. J. Lee, J. Ji, K. Hyun, H. Lee and Y. Kwon, Sensors Actuators B Chem.,372, 132647 (2022).
5. J. Lee, K. Hyun and Y. Kwon, J. Ind. Eng. Chem., 93, 383 (2021).
6. B. Bhargawa, Y. Xu, I. K. Yoo, S. G. Kang and K. Ryu, Korean J.Chem. Eng., 39, 3048 (2022).
7. N. Hossain, L. L. Hoong, P. Barua, M. E. M. Soudagar and T. M. I.Mahlia, Korean J. Chem. Eng., 38, 2493 (2021).
8. S. El Ichi-Ribault, J. P. Alcaraz, F. Boucher, B. Boutaud, R. Dalmolin, J. Boutonnat, P. Cinquin, A. Zebda and D. K. Martin, Electrochim. Acta, 269, 360 (2018).
9. A. Niiyama, K. Murata, Y. Shigemori, A. Zebda and S. Tsujimura,J. Power Sources, 427, 49 (2019).
10. X. Wang, J. H. Kim, Y. B. Choi, H. H. Kim and C. J. Kim, Korean J.Chem. Eng., 36, 1172 (2019).
11. M. Kizling, M. Dzwonek, A. Nowak, Ł. Tymecki, K. Stolarczyk, A.Więckowska and R. Bilewicz, Nanomaterials, 10, 1 (2020).
12. M. Christwardana, Y. Chung and Y. Kwon, Korean J. Chem. Eng.,34, 3009 (2017).
13. Y. Chung, Y. Ahn, D. H. Kim and Y. Kwon, J. Power Sources, 337,152 (2017).
14. Y. Chung, M. Christwardana, D. C. Tannia, K. J. Kim and Y. Kwon,J. Power Sources, 360, 172 (2017).
15. L. Wang, X. Wu, B. S. Q. Su, R. Song, J.-R. Zhang and J.-J. Zhu,Adv. Energy Sustain. Res., 2, 2100031 (2021).
16. P. N. Bartlett and F. A. Al-Lolage, J. Electroanal. Chem., 819, 26(2018).
17. J. Ji, S. Kim, Y. Chung and Y. Kwon, J. Ind. Eng. Chem., 111, 263(2022).
18. A. Chaubey and B. D. Malhotra, Biosens. Bioelectron., 17, 441 (2002).
19. K. Hyun, S. Kang, J. Kim and Y. Kwon, ACS Appl. Mater. Interfaces,12, 23635 (2020).
20. M. N. Zafar, N. Beden, D. Leech, C. Sygmund, R. Ludwig and L.Gorton, Anal. Bioanal. Chem., 402, 2069 (2012).
21. C. Bunte, L. Hussein and G. A. Urban, J. Power Sources, 247, 579(2014).
22. K. Hyun, J. Lee, S. Kang and Y. Kwon, J. Energy Chem., 61, 155(2021).
23. J. Lee, K. Hyun, J. M. Park, H. S. Park and Y. Kwon, Int. J. EnergyRes., 45, 20959 (2021).
24. Y. Lin, M. Bariya, H. Y. Y. Nyein, L. Kivimäki, S. Uusitalo, E. Jansson, W. Ji, Z. Yuan, T. Happonen, C. Liedert, J. Hiltunen, Z. Fan and A. Javey, Adv. Funct. Mater., 29, 1 (2019).
25. R. Zumpano, L. Lambertini, C. Tortolini, P. Bollella, G. Favero, R.Antiochia and F. Mazzei, J. Power Sources, 476, 228615 (2020).
26. K. Haneda, S. Yoshino, T. Ofuji, T. Miyake and M. Nishizawa, Electrochim. Acta, 82, 175 (2012).
27. S. Kang, K. S. Yoo, Y. Chung and Y. Kwon, J. Ind. Eng. Chem., 62,329 (2018).
28. G. Li, Z. Li, C. Xu, Z. Hou and Z. Hu, ChemElectroChem, 8, 4529(2021).
29. U. Salaj-Kosla, S. Pöller, Y. Beyl, M. D. Scanlon, S. Beloshapkin, S.
Shleev, W. Schuhmann and E. Magner, Electrochem. Commun., 16,92 (2012).
30. S. C. Barton, M. Pickard, R. Vazquez-Duhalt and A. Heller, Biosens. Bioelectron., 17, 1071 (2002).
31. H. An, H. Jeon, J. Ji, Y. Kwon and Y. Chung, J. Energy Chem., 58,463 (2021).
32. J. Ji, S. Ro and Y. Kwon, J. Ind. Eng. Chem., 87, 242 (2020).
33. J. Ji, J. Woo, Y. Chung, S. H. Joo and Y. Kwon, Appl. Surf. Sci., 511,145449 (2020).
34. J. Luo, L. Ma, F. Svec, T. Tan, Y. Lv, K. Chansaenpak, A. Kamkaew,S. Lisnund, P. Prachai, P. Ratwirunkit, T. Jingpho, V. Blay and P.
Pinyou, Biotechnol. J., 11, 1 (2021).
35. K. Elouarzaki, M. Bourourou, M. Holzinger, A. Le Goff, R. S. Marksand S. Cosnier, Energy Environ. Sci., 8, 2069 (2015).
36. J. Ji, Y. Chung, K. Hyun, K. Y. Chung and Y. Kwon, J. Ind. Eng.Chem., 88, 366 (2020).
37. A. Haeberlin, A. Zurbuchen, J. Schaerer, J. Wagner, S. Walpen, C.Huber, H. Haeberlin, J. Fuhrer and R. Vogel, Europace, 16, 1534(2014).
38. R. Hinchet, H. J. Yoon, H. Ryu, M. K. Kim, E. K. Choi, D. S. Kim and S. W. Kim, Science (80-. ), 365, 491 (2019).
39. M. Christwardana, Y. Chung, D. H. Kim and Y. Kwon, J. Ind. Eng.Chem., 71, 435 (2019).
40. M. J. González-Guerrero, F. J. del Campo, J. P. Esquivel, F. Giroud,S. D. Minteer and N. Sabaté, J. Power Sources, 326, 410 (2016)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로