ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received August 13, 2022
Revised January 16, 2023
Accepted February 3, 2023
Acknowledgements
This work was supported by the Inner Mongolia Special Project for Transformation of Scientific and Technological Achievements [2019CG073], Solid Waste Resource National Key Research & Development Project [2020YFC1909105] and Major Science and Technology Project of Inner Mongolia Autonomous Region [2021ZD0016]. Key Project of Scientific and Technological Research in Colleges and Universities of Inner Mongolia Autonomous Region [NJZZ23056], Basic Scientific Research Business Fund Project of Universities Direc
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Effect of Cr2O3 on the viscosity and structure of slag (or glass) of CaO-MgO-Al2O3-SiO2 system

School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, China
wangyici01060@163.com
Korean Journal of Chemical Engineering, July 2023, 40(7), 1783-1791(9), 10.1007/s11814-023-1432-0
downloadDownload PDF

Abstract

The glass-ceramics of CaO-MgO-Al2O3-SiO2-Cr2O3 system was prepared by melting method using blast furnace slag, low-carbon ferrochrome alloy slag and quartz sand as raw materials, and the effect of Cr2O3 on the viscosity and structure of slag (or glass) of CaO-MgO-Al2O3-SiO2 (CMAS) system at high temperature was studied. The Urbain viscosity prediction model was established and optimized, and the effect of Cr2O3 on the structure of slag (or glass) was studied by Raman spectroscopy. The results show that when the mass fraction of Cr2O3 is in the range of 0.85-2.05%, the viscosity of slag (or glass) of CMAS system decreases with the increase of Cr2O3 content. The average relative errors between the experimented viscosity value and the calculated viscosity value obtained by using the optimized Urbain model are less than 20%, which is effective and universal for the viscosity prediction of slag (or glass) of CaO-MgO-Al2O3-SiO2-Cr2O3 system. With the increase of Cr2O3 content, the complex silicon oxygen tetrahedrons (Q3) disintegrate into a larger number of simple silicon oxygen tetrahedrons (Q0, Q1, Q2), resulting in the sparse structure of the melt network and a decrease in macroscopic viscosity.

References

1. D. Gao, F. P. Wang, Y. T. Wang and Y. N. Zeng, Sustainability, 12(2020).
2. M. Rathore and A. Dalvi, Indian J. Pure Ap. Phy., 51, 372 (2013).
3. W. X. Shang, Z. W. Peng, Y. W. Huang, F. Q. Gu, J. Zhang, H. M.Tang, L. Yang, W. G. Tian, M. J. Rao, G. H. Li and T. Jiang, J. Cleaner Production, 317 (2021).
4. H. T. Gao, X. H. Liu, J. Q. Chen, J. L. Qi, Y. B. Wang and Z. R. Ai,Ceram. Int., 44, 6044 (2018).
5. B. E. Yekta and P. Alizadeh, Glass Technol., 46, 347 (2005).
6. W. Zhao, X. F. Huang, B. J. Yan, S. Y. Hu, H. W. Guo and D. Chen,Sustainability-basel, 13 (2021).
7. J. Chang, H. J. Li, K. D. Zheng, C. G. Liu, L. M. Wang, B. Li, X. N.Bu and H. Z. Shao, Physicochem. Probl. Mi., 56, 460 (2020).
8. L. B. Deng, S. Wang, Z. Zhang, Z. H. Li, R. D. Jia, F. Yun, H. Li,Y. H. Ma and W. C. Wang, Mater. Chem. Phys., 251 (2020).
9. W. J. Duan, Q. B. Yu, J. X. Liu, K. Wang, H. Q. Xie, Q. Qin and Z. C. Han, Ironmak Steelmak, 43, 730 (2016).
10. X. J. Dong, H. Y. Sun, X. F. She, Q. G. Xue and J. S. Wang, Ironmak Steelmak, 41, 99 (2014).
11. Z. Li, Z. W. Luo, X. Y. Li, T. Y. Liu, L. M. Guan, T. Wu and A. X.Lu, J. Porous. Mat., 23, 231 (2016).
12. A.Y. Kolobov and G.A. Sycheva, Glass Phys. Chem+, 46, 249 (2020).
13. W. X. Dong, Q. F. Bao, J. E. Zhou, T. G. Zhao, K. Liu, S. Z. Li, S. Y.Liu and K. X. Ma, J. Ceram. Soc. Jpn., 128, 821 (2020).
14. D. Di Genova, J. Vasseur, K. U. Hess, D. R. Neuville and D. B. Dingwell, J. Non-cryst Solids, 470, 78 (2017).
15. R. Z. Xu, J. L. Zhang, Z. Y. Wang and K. X. Jiao, Steel Res. Int., 88 (2017).
16. T. L. Tian, Y. Z. Zhang, H. W. Xing, J. Li and Z. Q. Zhang, High Temp. Mat. Pr-isr, 37, 33 (2018).
17. I. Vilciu, Metal Int., 18, 126 (2013).
18. G. Urbain, Y. Bottinga and P. Richet, Geochimica Et Cosmochimica Acta, 46 (1982).
19. P. V. Riboud, Y. Roux, L. D. Lucas and H. Gaye, Huettenprax. Metallweiterverarb, 19, 859 (1981).
20. K. C. Mills and S. Sridhar. Ironmaking & Steelmaking, 26, 262 (1999).
21. T. Iida, H. Sakai, Y. Kita and K. Shigeno, High Temp. Mat. Pr-isr,19, 153 (2000).
22. H. Masai, B Chem. Soc. Jpn., 91, 950 (2018).
23. R. Wang and B. M. Zhang, Spectrosc. Spectanal, 30, 376 (2010).
24. C. Balachandran, J. F. Munoz and T. Arnold, Cement Concrete Res.,92, 66 (2017).
25. S. Das, A. Madheshiya, S. S. Gautam and C. R. Gautam, J. NonCryst. Solids, 478, 16 (2017).
26. Y. Shi, B. W. Li, M. Zhao and M. X. Zhang, J. Am. Ceram. Soc., 101,3968 (2018).
27. H. Ko, M. Kim, S. M. Park and H. M. Lim, J. Eur. Ceram. Soc., 58,160 (2021).
28. V. O. Sinelnikov and D. Kalisz, Glass Ceram+, 73, 144 (2016).
29. L. Forsbacka and L. Holappa, Scand J. Metall, 33, 261 (2004).
30. R. Z. Xu, J. L. Zhang, Z. Y. Wang and K. X. Jiao, Steel Res. Int., 88(2017).
31. H. S. Ray and S. Pal, Ironmak Steelmak, 31, 125 (2004).
32. A. S. Kirichenko and S. M. Nekhamin, Metallurgist+, 64, 548 (2020).
33. H. Y. Zheng, Y. Q. Ding, S. F. Zhou, S. F. Zhou, Q. L. Wen, X. Jiang,Q. J. Gao and F. M. Shen, Steel Res. Int., 92 (2021).
34. D. Kalisz, Arch Metall Mater, 59, 149 (2014).
35. R. Z. Xu, J. L. Zhang, Z. Y. Wang and K. X. Jiao, Steel Res. Int., 88(2017).
36. C. Y. Xu, C. Wang, R. Z. Xu and J. L. Zhang, Int. J. Min. Met. Mater.,28, 797 (2021).
37. T. Wu, Y. L. Zhang, F. Yuan and Z. Q. An, Metall Mater Trans B,49, 1719 (2018).
38. C. Han, M. Chen, W. D. Zhang, Z. X. Zhao, T. Evans, A. V. Nguyen and B. J. Zhao, Steel Res. Int., 86, 678 (2015).
39. H. Ko, M. Kim and S. M. Park, J. Eur. Ceramsoc., 58, 160 (2021).
40. Y. Q. Wu, G. C. Jiang and J. L. You, J. Chem. Phys., 121, 7883 (2004).
41. W. N. Li, R. Luo and C. Li, J. Non-Cryst. Solids, 449, 119 (2016).
42. F. Schiavi, N. Bolfan-Casanova and A. C. Withers, Chem. Geol., 483,312 (2018).
43. G. R Kumar and M. C. Rao, Optik, 181, 721 (2019).
44. B. W. Li, L. B. Deng and X. F. Zhang, J. Non-Cryst. Solids, 380, 103(2013).
45. M. V. S. Rao, C. Rajyasree and T. Narendrudu, Opt. Mater., 47, 315(2015).
46. S. L. Ou-Yanga, B. W. Li and X. F. Zhang, Optoelectron Adv. Mat., 9(2015).
47. A. M. Welsch, J. L. Knipping and H. Behrens, J. Non-Cryst. Solids,471, 98 (2017).
48. M. Lesniak, J. Partyka and M. Sitarz, Phys. Chem. Glasses-B, 58, 1(2017).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로