ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received October 18, 2022
Revised December 22, 2022
Accepted January 31, 2023
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

A new class of Mx-CuSb2O6-CuSb2O4 (Mx=None, Fe, Ni, Ce and Yb) nanocomposites: Physical and electrochemical properties, and facile catalytic fabrication of 2-amino-4H-benzochromenes derivatives

1Department of Physics, Faculty of Science, Jundi-Shapur University of Technology, Dezful, Iran 2Department of Inorganic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran 3Department of Inorganic Chemistry, Faculty of Chemistry, Semnan University, Semnan, Iran
Korean Journal of Chemical Engineering, July 2023, 40(7), 1792-1803(12), 10.1007/s11814-023-1347-9
downloadDownload PDF

Abstract

Solid state synthesis of some new Mx-CuSb2O6-CuSb2O4 (Mx=None, Fe, Ni, Ce and Yb) nanocomposites was introduced in the present research study. The physicoelectrochemical properties of synthesized nanocomposites were investigated by different techniques, such as XRPDT, Rietveld, FTIR, FESEM, UV-Vis, VSM, CV and EIS. Rietveld analysis data revealed that all of the synthesized samples display the monoclinic crystal phase with the space group of P21/n. The estimated direct band gap energy of the obtained nanocomposites was in the range of 2.0 to 2.7 eV, which confirms that are active in ultraviolet-visible region. The VSM data indicated that the maximum magnetic behavior was found for Ni doped - Cu-Sb-O nanocomposite. Also, the catalytic performance of nanocomposites to synthesis 2-amino-4H-benzochromenes under ultrasonic and microwave was investigated. The considered parameters, such as solvent type, catalyst amount and reaction time, influencing the yield of the 4H-benzochromene reaction were studied. The maximum yield for the synthesizing of the 4H-benzochromene compounds was obtained when EtOH was used as the reaction solvent. The catalyst amount and reaction time were 15 mol% and 8 min, respectively, under ultrasonic conditions, while benzaldehyde was used as an aldehyde derivative.

References

1. O. Scarlat, A. C. Payne, S. Mihaiu, G. Aldica and M. Zaharescu, J.Optoelectron. Adv. Mater., 5, 997 (2003).
2. A. Rebello, M. G. Smith, J. J. Neumeier, B. D. White and Y.-K. Yu,Phys. Rev. B, 87, 224427 (2013).
3. A. B. Christian, S. H. Masunaga, A. T. Schye, A. Rebello, J. J. Neumeier and Y.-K. Yu, Phys. Rev. B, 90, 224423 (2014).
4. N. Prasai, A. Rebello, A. B. Christian, J. J. Neumeier and J. L. Cohn,Phys. Rev. B, 91, 054403 (2015).
5. M. T. Atanasova, A. M. Strydom, C. J. H. Schutte, L. C. Prinsloo and W. W. Focke, J. Mater Sci., 49, 3497 (2014).
6. A. Yu. Nikulin, E. A. Zvereva, V. B. Nalbandyan, I. L. Shukaev, A. I.Kurbakov, M. D. Kuchugura, G. V. Raganyan, Yu. V. Popov, V. D.
Ivanchenko and A. N. Vasiliev, Dalton Trans., 46, 6059 (2017).
7. M. T. Atanasova, A. M. Strydom, C. J. H. Schutte, L. C. Prinsloo and W. W. Focke, J. Mater. Sci., 49, 3497 (2014).
8. S. Atri, S. Uma and R. Nagarajan, Mater. Sci. Semicond. Process., 119,105226 (2020).
9. E.-O. Giere, A. Brahimi, H. J. Deiseroth and D. Reinen, J. Solid State Chem., 131, 263 (1997).
10. A. Rebello, M. G. Smith, J. J. Neumeier, B. D. White and Y.-K. Yu,Phys. Rev. B: Condens. Matter., 87, 224427 (2013).
11. A. M. Nakua and J. E. Greedan, J. Solid State Chem., 118, 199 (1995).
12. D. Kasinathan, K. Koepernik and H. Rosner, Phys. Rev. Lett., 100,237202 (2008).
13. M. Kato, A. Hatazaki, K. Yoshimura and K. Kosuge, Phys. B, 281,663 (2000).
14. M. Herak, D. Žilić, D. Matković-Calogović and H. Berger, Phys.Rev. B: Condens. Matter., 91, 174436 (2015).
15. E.-O. Giere, A. Brahimi, H. J. Deiseroth and D. Reinen, J. Solid State Chem., 131, 263 (1997).
16. D. T. Maimone, A. B. Christian, J. J. Neumeier and E. Granado, Phys.Rev. B, 97, 104304 (2018).
17. S. Simada and K. J. D. Mackenzie, Thermochim. Acta, 56, 73 (1982).
18. A. Nakua, H. Yun, J. N. Reimers, J. E. Greedan and C. V. Stager, J.Solid State Chem., 91, 105 (1991).
19. E. I. Ramos, J. Isasi, M. Galtan and M. L. Veiga, An. R. Soc. Esp.Quím., 87, 966 (1991).
20. S. Shimada, K. Kodaira snd T. Matsushita, J. Solid State Chem., 59,237 (1985).
21. S. Shimada, K. J. D Mackenzie, K. Kodaira, T. Matsushita and T.Ishii, Thermochim. Acta, 133, 73 (1988).
22. E. O. Giere, A. Brahimi, H. J. Deiseroth and D. Reinen, J. Solid State Chem., 131, 263 (1997).
23. M. Zaharescu, S. Mihaiu, S. Zuca and K. Matiasovsky, J. Mater. Sci.,26, 1666 (1991).
24. A. Nakua, H. Yun, J. N. Reimers, J. E. Greedan and C. V. Stager, J.Solid State Chem., 91, 105 (1991).
25. A. Rebello, M. G. Smith, J. J. Neumeier, B. D. White and Y.-K. Yu,Phys. Rev. B, 87, 224427 (2013).
26. A. V. Prokofiev, F. Ritter, W. Assmus, B. J. Gibson and R. K. Kremer,J. Crystal Growth, 247, 457 (2003).
27. S. Shimada, K. Kodaira and T. Matsushita, J. Crystal Growth, 72,753 (1985).
28. W. W. Focke, S. S. Mkhize, R. Storey, O. D. Fabbro and E. Muller,Chem. Eng. Comm., 201, 153 (2014).
29. K. Kato, K. Kajimoto, K. Yoshimura, K. Kosuge, M. Nishi and K.Kakurai, J. Phys. Soc. Jpn., 71, 187 (2002).
30. M. Kato, Y. Nogi, S. Hongo and K. Hirota, J. Phys.: Conference Series,344, 012010 (2012).
31. S. Jiao, G. Pang, H. Liang, Y. Chen and S. Feng, J. Nanopart. Res.,9, 605 (2007).
32. H.-B. Kang, C. D. Ling and T. Söhnel, Proceedings – 38th Annual Condensed Matter and Materials Meeting – Waiheke Island, Auckland, NZ (2014).
33. H. A. Oskooie, M. M. Heravi, N. Karimi and G. Kohansal, Synth.Commun., 41, 2763 (2011).
34. N. Lukasik and E. W. Wysiecka, Curr. Org. Syn., 11 (2014).
35. D. Muley, Y. Wang, J. Hu and D. Shekhawat, Catalysis, 33, 1 (2021).
36. B. Banerjee, Ultrason. Sonochem., 35, 1 (2017).
37. M. Parishani, M. Nadafan, Z. Dehghani, R. Malekfar and G. H. H.Khorrami, Results. Phys., 7, 3619 (2017).
38. S. Y. Marzouk and F. H. Elbatal, J. Mol. Struct., 1063, 328 (2014).
39. O. Scarlat, M. Susana-Mihaiu and M. Zaharescu, J. Eur. Ceram.Soc., 22, 1839 (2002).
40. W. Tang, L. Liu, S. Tian, L. Li, Y. Yue, Y. Wu and K. Zhu, Chem.Commun., 47, 10058 (2011).
41. W. Chen, J. Zhao, Y. Li, S. Li, C. Jin, C. Yang, X. Feng, J. Zhang and L. Mi, Chem. Electro. Chem., 1, 601 (2014).
42. Y. Li, X. Feng, S. Cui, Q. Shi, L. Mi and W. Chen, Cryst. Eng. Comm.,1 (2013).
43. P. Connor, J. Schuch, B. Kaiser and W. Jaegermann, Z. Phys. Chem.,234, 979 (2020).
44. C. R. Ravikumar, M. R. Anil Kumar, H. P. Nagaswarupa, S. C. Prashantha, A. S. Bhatt, M. S. Santosh and D. Kuznetsov, J. Alloy.Compd., 738, 332 (2018).
45. Y. Yang, K. Jiang, J. Guo, J. Li, X. Peng, B. Hong, X. Wang and H.Ge, Chem. Eng. J., 381, 122596 (2020).
46. X.-Q. Zhang, R.-F. Shen, X.-J. Guo, X. Yan, Y. Chen, J.-T. Hu and W.-Z. Lang, Chem. Eng. J., 408, 128018 (2021).
47. S. Akocak, B. Şen, N. Lolak, A. Şavk, M. Koca, S. Kuzu and F. Şen,Nano-Struct. Nano-Objects, 11, 25 (2017).
48. S. Zavar, Arab. J. Chem., 10, 67 (2017).
49. B. N. Mahato, T. Krithiga, J. A. Kumar and G. Yogalakshmi, Can. J.Chem., 100 (2022).
50. R. E. Keihan, S. Bahrami, M. G. Gorab, Z. Sadat and A. Maleki, Sci.Rep., 12, 10664 (2022).
51. M. Ebrahimi, S. Abdolmohammadi and R. K. Kojoori, Polycycl.Aromat. Compd., 42, 3440 (2022)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로