Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 18, 2022
Revised December 22, 2022
Accepted January 31, 2023
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
A new class of Mx-CuSb2O6-CuSb2O4 (Mx=None, Fe, Ni, Ce and Yb) nanocomposites: Physical and electrochemical properties, and facile catalytic fabrication of 2-amino-4H-benzochromenes derivatives
Abstract
Solid state synthesis of some new Mx-CuSb2O6-CuSb2O4 (Mx=None, Fe, Ni, Ce and Yb) nanocomposites
was introduced in the present research study. The physicoelectrochemical properties of synthesized nanocomposites
were investigated by different techniques, such as XRPDT, Rietveld, FTIR, FESEM, UV-Vis, VSM, CV and EIS. Rietveld analysis data revealed that all of the synthesized samples display the monoclinic crystal phase with the space group
of P21/n. The estimated direct band gap energy of the obtained nanocomposites was in the range of 2.0 to 2.7 eV,
which confirms that are active in ultraviolet-visible region. The VSM data indicated that the maximum magnetic
behavior was found for Ni doped - Cu-Sb-O nanocomposite. Also, the catalytic performance of nanocomposites to
synthesis 2-amino-4H-benzochromenes under ultrasonic and microwave was investigated. The considered parameters,
such as solvent type, catalyst amount and reaction time, influencing the yield of the 4H-benzochromene reaction were
studied. The maximum yield for the synthesizing of the 4H-benzochromene compounds was obtained when EtOH
was used as the reaction solvent. The catalyst amount and reaction time were 15 mol% and 8 min, respectively, under
ultrasonic conditions, while benzaldehyde was used as an aldehyde derivative.
Keywords
References
2. A. Rebello, M. G. Smith, J. J. Neumeier, B. D. White and Y.-K. Yu,Phys. Rev. B, 87, 224427 (2013).
3. A. B. Christian, S. H. Masunaga, A. T. Schye, A. Rebello, J. J. Neumeier and Y.-K. Yu, Phys. Rev. B, 90, 224423 (2014).
4. N. Prasai, A. Rebello, A. B. Christian, J. J. Neumeier and J. L. Cohn,Phys. Rev. B, 91, 054403 (2015).
5. M. T. Atanasova, A. M. Strydom, C. J. H. Schutte, L. C. Prinsloo and W. W. Focke, J. Mater Sci., 49, 3497 (2014).
6. A. Yu. Nikulin, E. A. Zvereva, V. B. Nalbandyan, I. L. Shukaev, A. I.Kurbakov, M. D. Kuchugura, G. V. Raganyan, Yu. V. Popov, V. D.
Ivanchenko and A. N. Vasiliev, Dalton Trans., 46, 6059 (2017).
7. M. T. Atanasova, A. M. Strydom, C. J. H. Schutte, L. C. Prinsloo and W. W. Focke, J. Mater. Sci., 49, 3497 (2014).
8. S. Atri, S. Uma and R. Nagarajan, Mater. Sci. Semicond. Process., 119,105226 (2020).
9. E.-O. Giere, A. Brahimi, H. J. Deiseroth and D. Reinen, J. Solid State Chem., 131, 263 (1997).
10. A. Rebello, M. G. Smith, J. J. Neumeier, B. D. White and Y.-K. Yu,Phys. Rev. B: Condens. Matter., 87, 224427 (2013).
11. A. M. Nakua and J. E. Greedan, J. Solid State Chem., 118, 199 (1995).
12. D. Kasinathan, K. Koepernik and H. Rosner, Phys. Rev. Lett., 100,237202 (2008).
13. M. Kato, A. Hatazaki, K. Yoshimura and K. Kosuge, Phys. B, 281,663 (2000).
14. M. Herak, D. Žilić, D. Matković-Calogović and H. Berger, Phys.Rev. B: Condens. Matter., 91, 174436 (2015).
15. E.-O. Giere, A. Brahimi, H. J. Deiseroth and D. Reinen, J. Solid State Chem., 131, 263 (1997).
16. D. T. Maimone, A. B. Christian, J. J. Neumeier and E. Granado, Phys.Rev. B, 97, 104304 (2018).
17. S. Simada and K. J. D. Mackenzie, Thermochim. Acta, 56, 73 (1982).
18. A. Nakua, H. Yun, J. N. Reimers, J. E. Greedan and C. V. Stager, J.Solid State Chem., 91, 105 (1991).
19. E. I. Ramos, J. Isasi, M. Galtan and M. L. Veiga, An. R. Soc. Esp.Quím., 87, 966 (1991).
20. S. Shimada, K. Kodaira snd T. Matsushita, J. Solid State Chem., 59,237 (1985).
21. S. Shimada, K. J. D Mackenzie, K. Kodaira, T. Matsushita and T.Ishii, Thermochim. Acta, 133, 73 (1988).
22. E. O. Giere, A. Brahimi, H. J. Deiseroth and D. Reinen, J. Solid State Chem., 131, 263 (1997).
23. M. Zaharescu, S. Mihaiu, S. Zuca and K. Matiasovsky, J. Mater. Sci.,26, 1666 (1991).
24. A. Nakua, H. Yun, J. N. Reimers, J. E. Greedan and C. V. Stager, J.Solid State Chem., 91, 105 (1991).
25. A. Rebello, M. G. Smith, J. J. Neumeier, B. D. White and Y.-K. Yu,Phys. Rev. B, 87, 224427 (2013).
26. A. V. Prokofiev, F. Ritter, W. Assmus, B. J. Gibson and R. K. Kremer,J. Crystal Growth, 247, 457 (2003).
27. S. Shimada, K. Kodaira and T. Matsushita, J. Crystal Growth, 72,753 (1985).
28. W. W. Focke, S. S. Mkhize, R. Storey, O. D. Fabbro and E. Muller,Chem. Eng. Comm., 201, 153 (2014).
29. K. Kato, K. Kajimoto, K. Yoshimura, K. Kosuge, M. Nishi and K.Kakurai, J. Phys. Soc. Jpn., 71, 187 (2002).
30. M. Kato, Y. Nogi, S. Hongo and K. Hirota, J. Phys.: Conference Series,344, 012010 (2012).
31. S. Jiao, G. Pang, H. Liang, Y. Chen and S. Feng, J. Nanopart. Res.,9, 605 (2007).
32. H.-B. Kang, C. D. Ling and T. Söhnel, Proceedings – 38th Annual Condensed Matter and Materials Meeting – Waiheke Island, Auckland, NZ (2014).
33. H. A. Oskooie, M. M. Heravi, N. Karimi and G. Kohansal, Synth.Commun., 41, 2763 (2011).
34. N. Lukasik and E. W. Wysiecka, Curr. Org. Syn., 11 (2014).
35. D. Muley, Y. Wang, J. Hu and D. Shekhawat, Catalysis, 33, 1 (2021).
36. B. Banerjee, Ultrason. Sonochem., 35, 1 (2017).
37. M. Parishani, M. Nadafan, Z. Dehghani, R. Malekfar and G. H. H.Khorrami, Results. Phys., 7, 3619 (2017).
38. S. Y. Marzouk and F. H. Elbatal, J. Mol. Struct., 1063, 328 (2014).
39. O. Scarlat, M. Susana-Mihaiu and M. Zaharescu, J. Eur. Ceram.Soc., 22, 1839 (2002).
40. W. Tang, L. Liu, S. Tian, L. Li, Y. Yue, Y. Wu and K. Zhu, Chem.Commun., 47, 10058 (2011).
41. W. Chen, J. Zhao, Y. Li, S. Li, C. Jin, C. Yang, X. Feng, J. Zhang and L. Mi, Chem. Electro. Chem., 1, 601 (2014).
42. Y. Li, X. Feng, S. Cui, Q. Shi, L. Mi and W. Chen, Cryst. Eng. Comm.,1 (2013).
43. P. Connor, J. Schuch, B. Kaiser and W. Jaegermann, Z. Phys. Chem.,234, 979 (2020).
44. C. R. Ravikumar, M. R. Anil Kumar, H. P. Nagaswarupa, S. C. Prashantha, A. S. Bhatt, M. S. Santosh and D. Kuznetsov, J. Alloy.Compd., 738, 332 (2018).
45. Y. Yang, K. Jiang, J. Guo, J. Li, X. Peng, B. Hong, X. Wang and H.Ge, Chem. Eng. J., 381, 122596 (2020).
46. X.-Q. Zhang, R.-F. Shen, X.-J. Guo, X. Yan, Y. Chen, J.-T. Hu and W.-Z. Lang, Chem. Eng. J., 408, 128018 (2021).
47. S. Akocak, B. Şen, N. Lolak, A. Şavk, M. Koca, S. Kuzu and F. Şen,Nano-Struct. Nano-Objects, 11, 25 (2017).
48. S. Zavar, Arab. J. Chem., 10, 67 (2017).
49. B. N. Mahato, T. Krithiga, J. A. Kumar and G. Yogalakshmi, Can. J.Chem., 100 (2022).
50. R. E. Keihan, S. Bahrami, M. G. Gorab, Z. Sadat and A. Maleki, Sci.Rep., 12, 10664 (2022).
51. M. Ebrahimi, S. Abdolmohammadi and R. K. Kojoori, Polycycl.Aromat. Compd., 42, 3440 (2022)