ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received April 21, 2022
Revised February 13, 2023
Accepted February 17, 2023
Acknowledgements
The authors are thankful to the Vice Chancellor of D. D. University, Nadiad and Managing Director of APAR Industries Limited, Mumbai, for their motivation, support and allocating of resources.
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

A practical approach for kinetic analysis of hydrogenation of complex mineral base oil

1Department of Chemical Engineering, Dharmsinh Desai University, Nadiad, India 2Research and Development Centre, APAR Industries Ltd., Mumbai, India
msrao@ddu.ac.in
Korean Journal of Chemical Engineering, July 2023, 40(7), 1804-1814(11), 10.1007/s11814-023-1400-8
downloadDownload PDF

Abstract

The mineral base oil contains paraffins, naphthenes and aromatic hydrocarbons (AH) with carbon chains ranging from C14 to C60. The presence of AH in base oil affects the performance of the product in many industrially oriented applications. The base oil considered in this work had AH around 14% w/w that needed to be reduced below 5% w/w for some applications and ideally 0% w/w. This paper demonstrates the practical approach for hydrogenation of complex mineral base oil for reducing AH. The mineral base oil rich in C20 was taken as the representative component. The hydrogen solubility in the oil was estimated using NRTL model. The semi-batch hydrogenation experiments were performed at different conditions and conversion of AH as high as 79% (i.e. 3% w/w) could be achieved. A second-order pseudo-homogeneous reaction kinetic model was proposed and validated. The conditions for reaction kinetics were optimized to achieve desirable conversion using Aspen Plus. To develop a continuous process for hydrogenation of AH, experiments were performed in a lab scale fixed bed reactor and the applicability of the kinetic model was validated. The kinetics was observed to be free of internal and external mass transfer limitations under lab scale conditions.

References

1. S. Modi, M. S. Rao, T. Snigdha and T. C. S. M. Gupta, SSRN Electron. J., 1 (2020).
2. T. Snigdha, S. Modi, T. Saritha, T. C. S. M. Gupta and M. S. Rao,Proceed. Green Technol. Sustain. Dev., 481 (2021).
3. ASTM D-2887-13, “Standard Test Method for Boiling Range Distribution of Petroleum Fractions by GC” (June 2013).
4. A. Y. El-Nagar, R. A. El Adly, T. A. Altahli, A. Alhadhrami, F.Modather, M. A. Ebiad and A. Salem, Pet. Sci. Technol., 36(3), 179(2018).
5. S. N. Suhaimi, A. R. A. Rahman, M. F. Md. Din, M. Z. Hassan, M. T.Ishak and M. T. Jusoh, J. Nanomaterials, 17 (2020).
6.API-1509, “API Base Oil Inter-changeability Guidelines”, Annexure-E (March 2015).
7. EU Regulation (EC) No 1223/2009 dated 30 November 2009 (published on 22 December 2009).
8. F. M. T. Luna, A. A. Pontes-Filho, E. D. Trindade, I. J. Silva, D. C. S.Azevedo and C.L. Cavalcante, Ind. Eng. Chem. Res., 47, 3207 (2008).
9. M. Busto, J. H. Sepulveda, N. R. Carrara and C. R. Vera, Energy Fuels, 29(2), 1249 (2015).
10. N. Yamanaka and S. Shimazu, Eng, 3, 60 (2022).
11. C. T. Tye, IntechOpen, Processing of Heavy Crude Oils - Challenges and Opportunities, Chapter-2, 1 (2019).
12. J. Gilbert and R. Kartzmark, US Patent, 3,658,692 (1972).
13. L. E. Kindwell, US Patent, 4,055,481 (1977).
14. T. Anstock, W. Himmel, M. Scharzmann, H. Dreyer, U. Lebert and A. Eisenbeis, US Patent, 4,786,402 (1988).
15. B. Corman, P. Korbach and K. Webber, US Patent, 4,801,373 (1989).
16. J. Powers, G. Prescott and J. Whiteman, US Patent, 5,855,767 (1999).
17. S. Hantzer, A. Ravella, I. Cody and D. Klein, US Patent, 6187176B1(2001).
18. W. Lin, J. M. Chen, J. Y. Chen and K. Tsai, US Patent, 6508931B1(2003).
19. G. R. B. Germaine, US Patent, 0258074A1 (2005).
20. J. Rosenbaum, B. Lok, K. Helling, S. Lee and R. Schexnaydre, US Patent, 8956581B2 (2015).
21. E. Kis, R. Neducin, G., Lomic, G. Boscovic, D. Z. Obadovic, J.Kiurski and P. Putanov, Polyhedron, 17(1), 27 (1998).
22. H. Qin, C. Guo, Y. Wu and J. Zhang, Korean J. Chem. Eng., 31(7),1168 (2014).
23. Z. Wei, H. Qiao, H. Yang, C. Zhang and X. Yan, J. Alloys Compd.,479, 855 (2009).
24. T. A. Le, T. W. Kim, S. H. Lee and E. D. Park, Korean J. Chem. Eng.,34, 3085 (2017).
25. J. H. Park, E. Hong, S. H. An, D. H. Lim and C. H. Shin, Korean J.Chem. Eng., 34, 2610 (2017).
26. A. Khodadadi, M. Farahmandjou and M. Yaghoubi, Mater. Res.Express, 6(2), 25 (2018).
27. Y. Ghalmi, F. Habelhames, A. Sayah, A. Bahloul, B. Nessark, M.Shalabi and J. M. Nunzi, Ionics, 25, 6025 (2019).
28. A. K. Sharma, S. Desnavi, C. Dixit, U. Varshney and A. Sharma,Int. J. Chem. Eng. Appl., 6(3), 156 (2015).
29. J. T. Richardson, R. Scates and M. V. Twigg, Appl. Catl., 246(1), 137(2003).
30. J. H. Cho, S. H. An, T. Chang and C. Shin, Catal. Lett., 146, 811(2016).
31. A. Kumar, G. D. Thakre, P. K. Arya and A. K. Jain, Ind. Eng. Chem.Res., 56 (13), 3527 (2017).
32. I. Kremer, T. Tomic, Z. Katancic, Z. H. Murgic, M. Erceg and D. R.Schneider, Clean Techn. Environ. Policy, 23, 811 (2021).
33.ASTM D-6352-19E1, “Standard Test Method for Boiling Range Distribution of Petroleum Distillates in Boiling Range from 174 oC
to 700 oC by GC” (2019).
34. NIST Standard Reference Data Base, US Department of Commerce (2021). https://webbook.nist.gov/cgi/cbook.cgi?Formula=C20H12&NoIon=on&Units=SI (last accessed on October 23, 2022).
35. Report on Polycyclic Aromatic Hydrocarbons: Evaluation of sources and effects by National Research Council (US) Committee on Perylene and analogues, (Table-2.1). https://www.ncbi.nlm.nih.gov/books/NBK217758/ (last accessed on October 23, 2022).
36. Bureau of Indian Standards, BIS: 13155 (1991), “Method of Test for Carbon Type Analysis of Mineral Base Oils by Infra-Red pectrophotometry” (Reaffirmed 2001).
37. Dow’s Fire & Explosion Index Hazard Classification Guide, 7th Ed.,AIChE: New York (1994).
38. S. Modi, M. S. Rao, and T. C. S. M. Gupta, Adv. Sustain. Dev.,Springer Singapore, 41 (2022).
39. B. A. Schofield, Z. E. Ring and R. W. Missen, Can. J. Chem. Eng.,70(4), 822 (1992).
40. A. Singh, A. Tiwari, S. M. Mahajani and R. D. Gudi, Ind. Eng. Chem.Res., 45(6), 2017 (2006).
41. D. E. Mears, Ind. Eng. Chem. Process Des. Dev., 10(4), 541 (1971).
42. P. B. Weisz and C. D. Prater, Adv. Catal., 6(C), 143 (1954).
43. P. B. Weisz and J. S. Hicks, Chem. Eng. Sci., 17, 265 (1962).
44. L. J. Zhao and Q. Sun, Int. J. Low-Carbon Technol., 10(3), 288 (2013).
45. R. B. Bird, W. E. Stewart and E. N. Lightfoot, Transport Phenomena, Wiley, New York (1960).
46. C. Satterfield, Mass Transfer in Heterogeneous Catalysis, MIT Press,Cambridge (1970).
47. H. C. Henry and J. B. Gilbert, Ind. Eng. Chem. Process Des. Dev.,12(3), 328 (1973).
48. C. N. Satterfield, AIChE J., 21(2), 209 (1975).
49. V. W. Weekman, Ind. Eng. Chem., 61(2), 53 (1969).
50. S. Mohanty, D. Kunzru and D. N. Saraf, Erdol & Kohle Erdgas Petrochemie, 44(12), 459 (1991).
51. B. Suryawanshi and B. Mohanty, Ind. Crops Prod., 123, 64 (2018)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로