ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received April 4, 2023
Revised April 22, 2023
Accepted May 9, 2023
Acknowledgements
This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (Ministry of Science and ICT, MSIT) (No. RS-2023-00209044). This research was also supported by the C1 Gas Refinery Program through the NRF, funded by the Korean government (MSIT) (No. 2017M3D3 A1A01037001).
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Integration of thermochemical conversion processes for waste-to-energy: A review

1Department of Global Smart City, Sungkyunkwan University, Suwon 16419, Korea 2Chemical & Process Technology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea 3Department of Science and Environmental Studies and State Key Laboratory in Marine Pollution, The Education University of Hong Kong, Tai Po, New Territories, 999077, Hong Kong, China 4School of Civil, Architectural Engineering, and Landscape Architecture, Sungkyunkwan University, Suwon 16419, Korea
jechanlee@skku.edu
Korean Journal of Chemical Engineering, August 2023, 40(8), 1815-1821(7), 10.1007/s11814-023-1494-z
downloadDownload PDF

Abstract

As a strategy for mitigating climate change and waste problems, waste-to-energy has rapidly emerged. Thermochemical conversion is a widely used waste-to-energy process that involves the degradation of waste structure at high temperatures under oxygenic or anoxygenic atmosphere. Integration of different thermochemical conversion processes enhances the overall efficiency of energy recovery from waste substances. To maximize the enhancement of waste-to-energy efficiency, the selection of thermochemical conversion system configurations is critical. Understanding possible configurations of hybrid thermochemical waste conversion processes (e.g., pyrolysis, gasification, hydrothermal carbonization, and aqueous-phase reforming) is necessary for further development and propagation of the integrated hybrid thermochemical waste conversion processes. To this end, we provide a systematic review of existing hybrid thermochemical waste conversion systems that integrate different thermochemical conversion processes for waste-to-energy. The challenges and future research suggestions regarding integrated thermochemical waste conversion processes are also discussed.

References

1. K. D. Sharma and S. Jain, Soc. Responsib. J., 16, 917 (2020).
2. J. Han, J. Byun, O. Kwon and J. Lee, Renew. Sust. Energ. Rev., 160,112336 (2022).
3. L. Sun, W. Liu, M. Fujii, Z. Li, J. Ren and Y. Dou, An overview of waste-to-energy: Feedstocks, technologies and implementations, Wasteto-energy, Ren, J., ed., Academic Press, 1 (2020).
4. N. B. Klinghoffer, N. J. Themelis and M. J. Castaldi, Waste to energy (wte): An introduction, Waste to energy conversion technology, linghoffer, N. B. and Castaldi, M. J., eds., Woodhead Publishing, 3 (2013).
5. A. Chauhan and R. P. Saini, Renew. Sust. Energ. Rev., 59, 388 (2016).
6. J.-Y. Kim, H. W. Lee, S. M. Lee, J. Jae and Y.-K. Park, Bioresour.Technol., 279, 373 (2019).
7. H. W. Ryu, D. H. Kim, J. Jae, S. S. Lam, E. D. Park and Y.-K. Park,Bioresour. Technol., 310, 123473 (2020).
8. O. Ali Qamar, F. Jamil, M. Hussain, A. a. H. Al-Muhtaseb, A. Inayat,A. Waris, P. Akhter and Y.-K. Park, Chem. Eng. J., 454, 140240 (2023).
9. M. W. Seo, S. H. Lee, H. Nam, D. Lee, D. Tokmurzin, S. Wang and Y.-K. Park, Bioresour. Technol., 343, 126109 (2022).
10. S. You, Y. S. Ok, S. S. Chen, D. C. W. Tsang, E. E. Kwon, J. Lee and C.-H. Wang, Bioresour. Technol., 246, 242 (2017).
11. J. Lee, D. Choi, E. E. Kwon and Y. S. Ok, Energy, 137, 412 (2017).
12. J. Lee, A. K. Sarmah and E. E. Kwon, Production and formation of biochar, Biochar from biomass and waste, Ok, Y. S., Tsang, D. C. W.,
Bolan, N. and Novak, J. M., eds., Elsevier, 3 (2019).
13. X. L. Yin, C. Z. Wu, S. P. Zheng and Y. Chen, Biomass Bioenergy,23, 181 (2002).
14. M. Hiloidhari and D.C. Baruah, Energy Sustain. Dev., 15, 214 (2011).
15. S. Shackley, S. Carter, T. Knowles, E. Middelink, S. Haefele and S.Haszeldine, Energy Policy, 41, 618 (2012).
16. L. Cutz, G. Berndes and F. Johnsson, Biofuels, Bioprod. Bioref., 13,1289 (2019).
17. S. Carley, Energy Policy, 37, 3071 (2009).
18. C. Park, E.-S. Jang and Y.-M. Kim, Korean J. Chem. Eng. (2023),doi:10.1007/s11814-022-1305-y.
19. J. Lai, Y. Meng, Y. Yan, E. Lester, T. Wu and C. H. Pang, Korean J.Chem. Eng., 38, 2235 (2021).
20. M. A. A. Khalid, N. Abdullah, M. N. M. Ibrahim, R. M. Taib, S. J. M.Rosid, N. M. Shukri, N. Yahaya and W. N. B. W. Abdullah, Korean J. Chem. Eng., 39, 1487 (2022).
21. P. Malik, M. Awasthi and S. Sinha, Int. J. Energy Res., 45, 3464 (2021).
22. G. Chen, J. Andries, H. Spliethoff, M. Fang and P. J. van de Enden,Sol. Energy, 76, 345 (2004).
23. Y. Liu and Y. Liu, Environ. Sci. Technol., 39, 3855 (2005).
24. S. Ashok, Renew. Energy, 32, 1155 (2007).
25. J. L. Bernal-Agustín and R. Dufo-López, Renew. Sust. Energ. Rev.,13, 2111 (2009).
26. X. Wang, A. Palazoglu and N. H. El-Farra, Appl. Energy, 143, 324 (2015).
27. J. Lee, K.-Y. A. Lin, S. Jung and E. E. Kwon, Chem. Eng. J., 452,139218 (2023).
28. J. Lee, S. Kim, S. You and Y.-K. Park, Renew. Sust. Energ. Rev., 178,113240 (2023).
29. P. Tanger, J. Field, C. Jahn, M. DeFoort and J. Leach, Front. Plant Sci., 4, 218 (2013).
30. B.R. Pinkard, D.J. Gorman, K. Tiwari, E.G. Rasmussen, J.C. Kramlich, P. G. Reinhall and I. V. Novosselov, Heliyon, 5, e01269 (2019).
31. S. Valizadeh, H. Hakimian, A. Farooq, B.-H. Jeon, W.-H. Chen, S.Hoon Lee, S.-C. Jung, M. Won Seo and Y.-K. Park, Bioresour.Technol., 365, 128143 (2022).
32. T. Maneerung, X. Li, C. Li, Y. Dai and C.-H. Wang, J. Clean. Prod.,188, 69 (2018).
33. A. F. Sotoodeh, F. Ahmadi, Z. Ghaffarpour, M. Ebadollahi, H. Nasrollahi and M. Amidpour, Sustain. Energy Technol. Assess., 49, 101649 (2022).
34. S. Safarian, R. Unnthorsson and C. Richter, Energy, 197, 117268 (2020).
35. S. Lee, J.-C. Seo, H.-J. Chun, S. Yang, E.-h. Sim, J. Lee and Y. T. Kim,Catal. Sci. Technol., 12, 5814 (2022).
36. R. Houston, N. Labbé, D. Hayes, C.S. Daw and N. Abdoulmoumine,React. Chem. Eng., 4, 1814 (2019).
37. J. R. Phillips, R. L. Huhnke and H. K. Atiyeh, Fermentation, 3, 28 (2017).
38. N. Lee, J. Joo, K.-Y. A. Lin and J. Lee, J. Environ. Chem. Eng., 9,106362 (2021).
39. C. Park, N. Lee, J. Kim and J. Lee, Environ. Pollut., 270, 116045 (2021).
40. C. Park, N. Lee, I. S. Cho, B. Ahn, H. K. Yu and J. Lee, Korean J.Chem. Eng., 39, 3343 (2022).
41. D. Lee, H. Nam, M. Won Seo, S. Hoon Lee, D. Tokmurzin, S.Wang and Y.-K. Park, Chem. Eng. J., 447, 137501 (2022).
42. S. Kim, N. Lee, S. W. Lee, Y. T. Kim and J. Lee, Chem. Eng. J., 412,128626 (2021).
43. S. Pyo, Y.-M. Kim, Y. Park, S. B. Lee, K.-S. Yoo, M. Ali Khan, B.-H.Jeon, Y. Jun Choi, G. Hoon Rhee and Y.-K. Park, J. Ind. Eng.Chem., 103, 136 (2021).
44. Y. Lee, S. W. Lee, Y. F. Tsang, Y. T. Kim and J. Lee, Chem. Eng. J.,387, 124194 (2020).
45. S. Kim, J. Byun, H. Park, N. Lee, J. Han and J. Lee, Energy, 241,122876 (2022).
46. S. W. Banks and A. V. Bridgwater, Catalytic fast pyrolysis for improved liquid quality, Handbook of biofuels production (second edition), Luque, R., Lin, C. S. K., Wilson, K. and Clark, J., eds., Woodhead Publishing, 391 (2016).
47. J. Lee, K.-H. Kim and E. E. Kwon, Renew. Sust. Energ. Rev., 77, 70 (2017).
48. H. Tan, C. T. Lee, P. Y. Ong, K. Y. Wong, C. P. C. Bong, C. Li and Y.Gao, IOP Conf. Ser.: Mater. Sci. Eng., 1051, 012075 (2021).
49. S. Kim, E. E. Kwon, Y. T. Kim, S. Jung, H. J. Kim, G. W. Huber and J. Lee, Green Chem., 21, 3715 (2019).
50. S. T. Yoganandham, G. Sathyamoorthy and R. R. Renuka, Emerging extraction techniques: Hydrothermal processing, Sustainable
seaweed technologies, Torres, M. D., Kraan, S. and Dominguez, H.,eds., Elsevier, 191 (2020).
51. H. S. Kambo and A. Dutta, Renew. Sust. Energ. Rev., 45, 359 (2015).52. H. Ahmed Baloch, S. Nizamuddin, M. T. H. Siddiqui, N. M.Mubarak, D.K. Dumbre, M.P. Srinivasan and G.J. Griffin, J. Environ. Chem. Eng., 6, 6589 (2018).
53. A. Funke and F. Ziegler, Biofuels, Bioprod. Bioref., 4, 160 (2010).
54. J. G. Lynam, M. Toufiq Reza, V. R. Vasquez and C. J. Coronella,Fuel, 99, 271 (2012).
55. S. S. Qureshi, Premchand, M. Javed, S. Saeed, R. Abro, S. A. Mazari,
N. M. Mubarak, M. T. H. Siddiqui, H. A. Baloch and S. Nizamuddin, Korean J. Chem. Eng., 38, 797 (2021).
56. T. Ariyawansha, D. Abeyrathna, T. Ahamed and R. Noguchi, Biomass Conv. Bioref., 12, 27 (2022).
57. Z. Yao and X. Ma, Energy, 141, 1156 (2017).
58. R. D. Cortright, R. R. Davda and J. A. Dumesic, Nature, 418, 964 (2002).
59. G. Wen, Y. Xu, Z. Xu and Z. Tian, Catal. Commun., 11, 522 (2010).
60. G. Wen, Y. Xu, Q. Liu, C. Wang, H. Liu and Z. Tian, Catal. Lett.,141, 1851 (2011).
61. M. B. Valenzuela, C. W. Jones and P. K. Agrawal, Energy Fuels, 20,1744 (2006).
62. G. Zoppi, G. Pipitone, R. Pirone and S. Bensaid, Catal. Today, 387,224 (2022).
63. R. R. Davda, J. W. Shabaker, G. W. Huber, R. D. Cortright and J. A.Dumesic, Appl. Catal. B: Environ., 56, 171 (2005).
64. P.D. Vaidya and J.A. Lopez-Sanchez, ChemistrySelect, 2, 6563 (2017).
65. A. Fasolini, R. Cucciniello, E. Paone, F. Mauriello and T. Tabanelli,Catalysts, 9, 917 (2019).
66. G. Pipitone, G. Zoppi, R. Pirone and S. Bensaid, Int. J. Hydrog.Energy, 47, 151 (2022).
67. L. He, J. Yang and D. Chen, Hydrogen from biomass: Advances in thermochemical processes, Renewable hydrogen technologies, Gandía,
L. M., Arzamendi, G. and Diéguez, P. M., eds., Elsevier, Amsterdam, Netherlands, 111 (2013).
68. R. Alipour Moghadam, S. Yusup, W. Azlina, S. Nehzati and A.Tavasoli, Energy Convers. Manag., 87, 670 (2014).
69. N. Gil-Lalaguna, J. L. Sánchez, M. B. Murillo, M. Atienza-Martínez and G. Gea, Energy, 76, 652 (2014).
70. N. Gil-Lalaguna, J. L. Sánchez, M. B. Murillo, E. Rodríguez and G.Gea, Chem. Eng. J., 248, 373 (2014).
71. N. Gil-Lalaguna, J. L. Sánchez, M. B. Murillo, V. Ruiz and G. Gea,Fuel, 129, 147 (2014).
72. K. Im-orb, T. Detchusananard, P. Ponpesh and A. Arpornwichanop, Energy Procedia, 142, 204 (2017).
73. Z. Chen, S. Gao and G. Xu, Appl. Energy, 208, 1527 (2017).
74. B. Dai, L. Zhang, J.-f. Cui, A. Hoadley and L. Zhang, Fuel Process.Technol., 155, 21 (2017).
75. J. Zhang, M. Ren, X. Li, Y. Ge, F. Gao, H. Chen, Q. Hao and X.Ma, Int. J. Hydrog. Energy, 44, 19742 (2019).
76. M. Faraji and M. Saidi, Int. J. Hydrog. Energy, 46, 18844 (2021).
77. M. Faraji and M. Saidi, Process Saf. Environ. Prot., 171, 874 (2023).
78. Q.-a. Xiong, Y. Zhang, Y. Huang, J. Li and W. Zhang, Fuel, 324,124650 (2022).
79. M. Yan, Y. Liu, Y. Song, A. Xu, G. Zhu, J. Jiang and D. Hantoko,Energy, 242, 123054 (2022).
80. A. S. Oliveira, A. Sarrión, J. A. Baeza, E. Diaz, L. Calvo, A. F.
Mohedano and M. A. Gilarranz, Chem. Eng. J., 442, 136301 (2022).
81. M. Rezaei and M. Mehrpooya, Energy Convers. Manag., 161, 35 (2018).
82. T. Detchusananard, N. Wuttipisan, P. Limleamthong, P. Prasertcharoensuk, F. Maréchal and A. Arpornwichanop, Energy Convers. Manag., 258, 115465 (2022).
83. H. I. Abdel-Shafy and M. S. M. Mansour, Egypt. J. Pet., 27, 1275 (2018).
84. S. Kathi, Bioenergy from phytoremediated phytomass of aquatic plants via gasification, Bioremediation and bioeconomy, Prasad,M. N. V., ed., Elsevier, Amsterdam, Nederland, 111 (2016).
85. M. Asadullah, Renew. Sust. Energ. Rev., 29, 201 (2014).
86. B. Buragohain, P. Mahanta and V. S. Moholkar, Renew. Sust. Energ.Rev., 14, 73 (2010).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로