Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received April 4, 2023
Revised April 22, 2023
Accepted May 9, 2023
- Acknowledgements
- This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (Ministry of Science and ICT, MSIT) (No. RS-2023-00209044). This research was also supported by the C1 Gas Refinery Program through the NRF, funded by the Korean government (MSIT) (No. 2017M3D3 A1A01037001).
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Integration of thermochemical conversion processes for waste-to-energy: A review
Abstract
As a strategy for mitigating climate change and waste problems, waste-to-energy has rapidly emerged.
Thermochemical conversion is a widely used waste-to-energy process that involves the degradation of waste structure
at high temperatures under oxygenic or anoxygenic atmosphere. Integration of different thermochemical conversion
processes enhances the overall efficiency of energy recovery from waste substances. To maximize the enhancement of
waste-to-energy efficiency, the selection of thermochemical conversion system configurations is critical. Understanding
possible configurations of hybrid thermochemical waste conversion processes (e.g., pyrolysis, gasification, hydrothermal carbonization, and aqueous-phase reforming) is necessary for further development and propagation of the integrated hybrid thermochemical waste conversion processes. To this end, we provide a systematic review of existing
hybrid thermochemical waste conversion systems that integrate different thermochemical conversion processes for
waste-to-energy. The challenges and future research suggestions regarding integrated thermochemical waste conversion processes are also discussed.
References
2. J. Han, J. Byun, O. Kwon and J. Lee, Renew. Sust. Energ. Rev., 160,112336 (2022).
3. L. Sun, W. Liu, M. Fujii, Z. Li, J. Ren and Y. Dou, An overview of waste-to-energy: Feedstocks, technologies and implementations, Wasteto-energy, Ren, J., ed., Academic Press, 1 (2020).
4. N. B. Klinghoffer, N. J. Themelis and M. J. Castaldi, Waste to energy (wte): An introduction, Waste to energy conversion technology, linghoffer, N. B. and Castaldi, M. J., eds., Woodhead Publishing, 3 (2013).
5. A. Chauhan and R. P. Saini, Renew. Sust. Energ. Rev., 59, 388 (2016).
6. J.-Y. Kim, H. W. Lee, S. M. Lee, J. Jae and Y.-K. Park, Bioresour.Technol., 279, 373 (2019).
7. H. W. Ryu, D. H. Kim, J. Jae, S. S. Lam, E. D. Park and Y.-K. Park,Bioresour. Technol., 310, 123473 (2020).
8. O. Ali Qamar, F. Jamil, M. Hussain, A. a. H. Al-Muhtaseb, A. Inayat,A. Waris, P. Akhter and Y.-K. Park, Chem. Eng. J., 454, 140240 (2023).
9. M. W. Seo, S. H. Lee, H. Nam, D. Lee, D. Tokmurzin, S. Wang and Y.-K. Park, Bioresour. Technol., 343, 126109 (2022).
10. S. You, Y. S. Ok, S. S. Chen, D. C. W. Tsang, E. E. Kwon, J. Lee and C.-H. Wang, Bioresour. Technol., 246, 242 (2017).
11. J. Lee, D. Choi, E. E. Kwon and Y. S. Ok, Energy, 137, 412 (2017).
12. J. Lee, A. K. Sarmah and E. E. Kwon, Production and formation of biochar, Biochar from biomass and waste, Ok, Y. S., Tsang, D. C. W.,
Bolan, N. and Novak, J. M., eds., Elsevier, 3 (2019).
13. X. L. Yin, C. Z. Wu, S. P. Zheng and Y. Chen, Biomass Bioenergy,23, 181 (2002).
14. M. Hiloidhari and D.C. Baruah, Energy Sustain. Dev., 15, 214 (2011).
15. S. Shackley, S. Carter, T. Knowles, E. Middelink, S. Haefele and S.Haszeldine, Energy Policy, 41, 618 (2012).
16. L. Cutz, G. Berndes and F. Johnsson, Biofuels, Bioprod. Bioref., 13,1289 (2019).
17. S. Carley, Energy Policy, 37, 3071 (2009).
18. C. Park, E.-S. Jang and Y.-M. Kim, Korean J. Chem. Eng. (2023),doi:10.1007/s11814-022-1305-y.
19. J. Lai, Y. Meng, Y. Yan, E. Lester, T. Wu and C. H. Pang, Korean J.Chem. Eng., 38, 2235 (2021).
20. M. A. A. Khalid, N. Abdullah, M. N. M. Ibrahim, R. M. Taib, S. J. M.Rosid, N. M. Shukri, N. Yahaya and W. N. B. W. Abdullah, Korean J. Chem. Eng., 39, 1487 (2022).
21. P. Malik, M. Awasthi and S. Sinha, Int. J. Energy Res., 45, 3464 (2021).
22. G. Chen, J. Andries, H. Spliethoff, M. Fang and P. J. van de Enden,Sol. Energy, 76, 345 (2004).
23. Y. Liu and Y. Liu, Environ. Sci. Technol., 39, 3855 (2005).
24. S. Ashok, Renew. Energy, 32, 1155 (2007).
25. J. L. Bernal-Agustín and R. Dufo-López, Renew. Sust. Energ. Rev.,13, 2111 (2009).
26. X. Wang, A. Palazoglu and N. H. El-Farra, Appl. Energy, 143, 324 (2015).
27. J. Lee, K.-Y. A. Lin, S. Jung and E. E. Kwon, Chem. Eng. J., 452,139218 (2023).
28. J. Lee, S. Kim, S. You and Y.-K. Park, Renew. Sust. Energ. Rev., 178,113240 (2023).
29. P. Tanger, J. Field, C. Jahn, M. DeFoort and J. Leach, Front. Plant Sci., 4, 218 (2013).
30. B.R. Pinkard, D.J. Gorman, K. Tiwari, E.G. Rasmussen, J.C. Kramlich, P. G. Reinhall and I. V. Novosselov, Heliyon, 5, e01269 (2019).
31. S. Valizadeh, H. Hakimian, A. Farooq, B.-H. Jeon, W.-H. Chen, S.Hoon Lee, S.-C. Jung, M. Won Seo and Y.-K. Park, Bioresour.Technol., 365, 128143 (2022).
32. T. Maneerung, X. Li, C. Li, Y. Dai and C.-H. Wang, J. Clean. Prod.,188, 69 (2018).
33. A. F. Sotoodeh, F. Ahmadi, Z. Ghaffarpour, M. Ebadollahi, H. Nasrollahi and M. Amidpour, Sustain. Energy Technol. Assess., 49, 101649 (2022).
34. S. Safarian, R. Unnthorsson and C. Richter, Energy, 197, 117268 (2020).
35. S. Lee, J.-C. Seo, H.-J. Chun, S. Yang, E.-h. Sim, J. Lee and Y. T. Kim,Catal. Sci. Technol., 12, 5814 (2022).
36. R. Houston, N. Labbé, D. Hayes, C.S. Daw and N. Abdoulmoumine,React. Chem. Eng., 4, 1814 (2019).
37. J. R. Phillips, R. L. Huhnke and H. K. Atiyeh, Fermentation, 3, 28 (2017).
38. N. Lee, J. Joo, K.-Y. A. Lin and J. Lee, J. Environ. Chem. Eng., 9,106362 (2021).
39. C. Park, N. Lee, J. Kim and J. Lee, Environ. Pollut., 270, 116045 (2021).
40. C. Park, N. Lee, I. S. Cho, B. Ahn, H. K. Yu and J. Lee, Korean J.Chem. Eng., 39, 3343 (2022).
41. D. Lee, H. Nam, M. Won Seo, S. Hoon Lee, D. Tokmurzin, S.Wang and Y.-K. Park, Chem. Eng. J., 447, 137501 (2022).
42. S. Kim, N. Lee, S. W. Lee, Y. T. Kim and J. Lee, Chem. Eng. J., 412,128626 (2021).
43. S. Pyo, Y.-M. Kim, Y. Park, S. B. Lee, K.-S. Yoo, M. Ali Khan, B.-H.Jeon, Y. Jun Choi, G. Hoon Rhee and Y.-K. Park, J. Ind. Eng.Chem., 103, 136 (2021).
44. Y. Lee, S. W. Lee, Y. F. Tsang, Y. T. Kim and J. Lee, Chem. Eng. J.,387, 124194 (2020).
45. S. Kim, J. Byun, H. Park, N. Lee, J. Han and J. Lee, Energy, 241,122876 (2022).
46. S. W. Banks and A. V. Bridgwater, Catalytic fast pyrolysis for improved liquid quality, Handbook of biofuels production (second edition), Luque, R., Lin, C. S. K., Wilson, K. and Clark, J., eds., Woodhead Publishing, 391 (2016).
47. J. Lee, K.-H. Kim and E. E. Kwon, Renew. Sust. Energ. Rev., 77, 70 (2017).
48. H. Tan, C. T. Lee, P. Y. Ong, K. Y. Wong, C. P. C. Bong, C. Li and Y.Gao, IOP Conf. Ser.: Mater. Sci. Eng., 1051, 012075 (2021).
49. S. Kim, E. E. Kwon, Y. T. Kim, S. Jung, H. J. Kim, G. W. Huber and J. Lee, Green Chem., 21, 3715 (2019).
50. S. T. Yoganandham, G. Sathyamoorthy and R. R. Renuka, Emerging extraction techniques: Hydrothermal processing, Sustainable
seaweed technologies, Torres, M. D., Kraan, S. and Dominguez, H.,eds., Elsevier, 191 (2020).
51. H. S. Kambo and A. Dutta, Renew. Sust. Energ. Rev., 45, 359 (2015).52. H. Ahmed Baloch, S. Nizamuddin, M. T. H. Siddiqui, N. M.Mubarak, D.K. Dumbre, M.P. Srinivasan and G.J. Griffin, J. Environ. Chem. Eng., 6, 6589 (2018).
53. A. Funke and F. Ziegler, Biofuels, Bioprod. Bioref., 4, 160 (2010).
54. J. G. Lynam, M. Toufiq Reza, V. R. Vasquez and C. J. Coronella,Fuel, 99, 271 (2012).
55. S. S. Qureshi, Premchand, M. Javed, S. Saeed, R. Abro, S. A. Mazari,
N. M. Mubarak, M. T. H. Siddiqui, H. A. Baloch and S. Nizamuddin, Korean J. Chem. Eng., 38, 797 (2021).
56. T. Ariyawansha, D. Abeyrathna, T. Ahamed and R. Noguchi, Biomass Conv. Bioref., 12, 27 (2022).
57. Z. Yao and X. Ma, Energy, 141, 1156 (2017).
58. R. D. Cortright, R. R. Davda and J. A. Dumesic, Nature, 418, 964 (2002).
59. G. Wen, Y. Xu, Z. Xu and Z. Tian, Catal. Commun., 11, 522 (2010).
60. G. Wen, Y. Xu, Q. Liu, C. Wang, H. Liu and Z. Tian, Catal. Lett.,141, 1851 (2011).
61. M. B. Valenzuela, C. W. Jones and P. K. Agrawal, Energy Fuels, 20,1744 (2006).
62. G. Zoppi, G. Pipitone, R. Pirone and S. Bensaid, Catal. Today, 387,224 (2022).
63. R. R. Davda, J. W. Shabaker, G. W. Huber, R. D. Cortright and J. A.Dumesic, Appl. Catal. B: Environ., 56, 171 (2005).
64. P.D. Vaidya and J.A. Lopez-Sanchez, ChemistrySelect, 2, 6563 (2017).
65. A. Fasolini, R. Cucciniello, E. Paone, F. Mauriello and T. Tabanelli,Catalysts, 9, 917 (2019).
66. G. Pipitone, G. Zoppi, R. Pirone and S. Bensaid, Int. J. Hydrog.Energy, 47, 151 (2022).
67. L. He, J. Yang and D. Chen, Hydrogen from biomass: Advances in thermochemical processes, Renewable hydrogen technologies, Gandía,
L. M., Arzamendi, G. and Diéguez, P. M., eds., Elsevier, Amsterdam, Netherlands, 111 (2013).
68. R. Alipour Moghadam, S. Yusup, W. Azlina, S. Nehzati and A.Tavasoli, Energy Convers. Manag., 87, 670 (2014).
69. N. Gil-Lalaguna, J. L. Sánchez, M. B. Murillo, M. Atienza-Martínez and G. Gea, Energy, 76, 652 (2014).
70. N. Gil-Lalaguna, J. L. Sánchez, M. B. Murillo, E. Rodríguez and G.Gea, Chem. Eng. J., 248, 373 (2014).
71. N. Gil-Lalaguna, J. L. Sánchez, M. B. Murillo, V. Ruiz and G. Gea,Fuel, 129, 147 (2014).
72. K. Im-orb, T. Detchusananard, P. Ponpesh and A. Arpornwichanop, Energy Procedia, 142, 204 (2017).
73. Z. Chen, S. Gao and G. Xu, Appl. Energy, 208, 1527 (2017).
74. B. Dai, L. Zhang, J.-f. Cui, A. Hoadley and L. Zhang, Fuel Process.Technol., 155, 21 (2017).
75. J. Zhang, M. Ren, X. Li, Y. Ge, F. Gao, H. Chen, Q. Hao and X.Ma, Int. J. Hydrog. Energy, 44, 19742 (2019).
76. M. Faraji and M. Saidi, Int. J. Hydrog. Energy, 46, 18844 (2021).
77. M. Faraji and M. Saidi, Process Saf. Environ. Prot., 171, 874 (2023).
78. Q.-a. Xiong, Y. Zhang, Y. Huang, J. Li and W. Zhang, Fuel, 324,124650 (2022).
79. M. Yan, Y. Liu, Y. Song, A. Xu, G. Zhu, J. Jiang and D. Hantoko,Energy, 242, 123054 (2022).
80. A. S. Oliveira, A. Sarrión, J. A. Baeza, E. Diaz, L. Calvo, A. F.
Mohedano and M. A. Gilarranz, Chem. Eng. J., 442, 136301 (2022).
81. M. Rezaei and M. Mehrpooya, Energy Convers. Manag., 161, 35 (2018).
82. T. Detchusananard, N. Wuttipisan, P. Limleamthong, P. Prasertcharoensuk, F. Maréchal and A. Arpornwichanop, Energy Convers. Manag., 258, 115465 (2022).
83. H. I. Abdel-Shafy and M. S. M. Mansour, Egypt. J. Pet., 27, 1275 (2018).
84. S. Kathi, Bioenergy from phytoremediated phytomass of aquatic plants via gasification, Bioremediation and bioeconomy, Prasad,M. N. V., ed., Elsevier, Amsterdam, Nederland, 111 (2016).
85. M. Asadullah, Renew. Sust. Energ. Rev., 29, 201 (2014).
86. B. Buragohain, P. Mahanta and V. S. Moholkar, Renew. Sust. Energ.Rev., 14, 73 (2010).