ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received December 16, 2022
Revised May 1, 2023
Accepted May 3, 2023
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Investigation of heat transfer of the frame of entrance door encompassing phase change materials through computational fluid dynamics schemes

1Department of Mechanical Engineering, Faculty of Engineering, Vali-e-Asr University of Rafsanjan, Iran 2Department of Civil Engineering, Faculty of Engineering, Vali-e-Asr University of Rafsanjan, Iran
m.shafiey@vru.ac.ir
Korean Journal of Chemical Engineering, August 2023, 40(8), 1863-1870(8), 10.1007/s11814-023-1490-3
downloadDownload PDF

Abstract

Embedment of phase change materials (PCMs) in buildings elements is a technique to lower the heating and cooling demands. In the present study, a frame of entrance doors filled with the PCMs was simulated for a sunny summer day condition of Rafsanjan city in Iran. It was assumed that the frame is subjected to the indoor and outdoor temperature and solar radiation. The simulation was carried out through 2-D finite element method taking into account heat and mass transfer in the PCM. A parametric study was conducted to investigate the type of PCMs, the volume PCMs as well as their positions in the frame. The results were compared with a common frame filled with air. The obtained findings showed that RT-25 is more effective than capric acid, paraffin and P116. Maximum reduction of heat flux was observed to be 37.72% for the frame filled with RT-25 when its outside walls were in contact with the PCM. The results also reveal that the incorporation of the PCM is effective for passive thermal storage.

References

1. K. K. W. Wan, D. H. W. Li, D. Liu and J. C. Lam, Build. Environ.,46(1), 223 (2011).
2. L. F. Cabeza, A. Castell, C. D. Barreneche, A. De Gracia and A. I.Fernández, Renew. Sust. Energy Rev., 15(3), 1675 (2011).
3. M. Pomianowski, P. Heiselberg and Y. Zhang, Energy Build., 67, 56 (2013).
4. N. Soares, J. J. Costa, A. R. Gaspar and P. Santos, Energy Build., 59,82 (2013).
5. H. Akeiber, P. Nejat, M. Z. A. Majid, M. A. Wahid, F. Jomehzadeh,I. Z. Famileh and S. A. Zaki, Renew. Sust. Energy Rev., 60, 1470 (2016).
6. Y. Cui, J. Xie, J. Liu and S. Pan, Procedia Eng., 121, 763 (2015).
7. A. Sarı, Energy Build., 69, 184 (2014).
8. V. A. A. Raj and R. Velraj, Renew. Sust. Energy Rev., 14(9), 2819 (2010).
9. C. Barreneche, H. Navarro, S. Serrano, L. F. Cabeza and A. I. Fernández, Energy Procedia, 57, 2408 (2014).
10. J. Giro-Paloma, M. Martínez, L. F. Cabeza and A. I. Fernández,Renew. Sust. Energy Rev., 53, 1059 (2016).
11. M. Alam, H. Jamil, J. Sanjayan and J. Wilson, Energy Build., 78, 192 (2014).
12. L. F. Cabeza, C. Castellon, M. Nogues, M. Medrano, R. Leppers and O. Zubillaga, Energy Build., 39(2), 113 (2007).
13. X. Jin, M. A. Medina and X. Zhang, Appl. Therm. Eng., 103, 1057 (2016).
14. J. Xie, W. Wang, J. Liu and S. Pan, Sol. Energy, 162, 533 (2018).
15. C. K. Halford and R. F. Boehm, Energy Build., 39(3), 298 (2007).
16. A. Fateh, D. Borelli, F. Devia and H. Weinläder, Therm. Sci. Eng.Prog., 6, 361 (2018).
17. A. Baniassadi, B. Sajadi, M. Amidpour and N. Noori, Sust. Energy Technol. Assess., 14, 92 (2016).\
18. E. M. Alawadhi, Energy Build., 40(3), 351 (2008).
19. M. A. Izquierdo-Barrientos, J. F. Belmonte, D. Rodríguez-Sánchez,A. E. Molina and J. A. Almendros-Ibáñez, Appl. Therm. Eng., 47,73 (2012).
20. Q. Wang, R. Wu, Y. Wu and C. Y. Zhao, Energy Build., 172, 328 (2018).
21. K. Kant, A. Shukla and A. Sharma, Sol. Energy, 155, 1233 (2017).
22. K. Saafi and N. Daouas, Energy, 187, 115987 (2019).
23. M. Arıcı, F. Bilgin, S. Nižetić and H. Karabay, Appl. Therm. Eng.,165, 114560 (2020).
24. M. Arıcı, F. Bilgin, M. Krajčík, S. Nižetić and H. Karabay, Energy,252, 124010 (2022).
25. E. Tunçbilek, M. Arıcı, M. Krajčík, Y. Li, M. Jurčević and S. Nižetić,Int. J. Energy Res., 46(14), 20249 (2022).
26. S. A. Memon, H. Z. Cui, H. Zhang and F. Xing, Appl. Energy, 139,43 (2015).
27. K. Biswas, J. Lu, P. Soroushian and S. Shrestha, Appl. Energy, 131,517 (2014).
28. J. Sage-Lauck and D. Sailor, Energy Build., 79, 32 (2014).
29. M. Kheradmand, M. Azenha, J. L. de Aguiar and J. Castro-Gomes,Energy, 94, 250 (2016).
30. D. Li, Y. Zheng, C. Liu and G. Wu, Energy Convers. Manage., 100,147 (2015).
31. A. Tokuç, T. Başaran and S.C. Yesügey, Energy Build., 102, 91 (2015).
32. M. Jaworski, P. Łapka and P. Furmański, Appl. Energy, 113, 548 (2014).
33. M. Arıcı, M. Tükel, C. Yıldız, D. Li and H. Karabay, Energy Build.,229, 110515 (2020).
34. M. F. Modest and S. Mazumder, Radiative heat transfer, Academic Press (2021).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로