Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received April 23, 2023
Revised June 12, 2023
Accepted June 14, 2023
- Acknowledgements
- This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (No. 2021R1I1A3054572).
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Rheological and molecular dynamics simulation studies of the gelation of human serum albumin in anionic and cationic surfactants
Abstract
We report the gelation of human serum albumin (HSA) of 5-12 wt% concentrations in 0-0.15 M aqueous
solutions of a cationic surfactant, cetyltrimethylammonium bromide (CTAB), or an anionic surfactant, sodium dodecyl
sulfate (SDS), under isothermal and nonisothermal conditions. Under both conditions, the initial increase in the CTAB
concentration (up to 0.075 M) accelerated HSA gelation (marked by decreasing gel times (tgel) for the isothermal case or
gel temperature (Tgel) for the nonisothermal case), whereas increasing the SDS concentration inhibited HSA gelation
(i.e., increasing tgel or Tgel). The increase and decrease in HSA gelation by CTAB and SDS, respectively, reached a maximum at a surfactant/protein molar ratio of 100. Rheological properties, i.e., storage modulus (G') and loss modulus
(G''), exhibited mechanically stable behavior of HSA/CTAB gels over the covered concentration range, whereas HSA/
SDS gels exhibited decreasing mechanical properties with increasing SDS concentration. Molecular dynamics simulation showed that the greater rate of the unfolding of the HSA structure in CTAB than in SDS was behind the rapid
gelation kinetics of HSA in CTAB compared with SDS. Our result establishes that cationic CTAB and anionic SDS surfactants exert wide-ranging control over the rheological and kinetic properties of HSA hydrogel
Keywords
References
2. R. Panahi and M. Baghban-Salehi, Polym. Polym. Compos.: A Ref.Ser., 1561 (2019).
3. P. Hájovská, M. Chytil and M. Kalina, Int. J. Biol. Macromol., 161,738 (2020).
4. A. Oliva, A. Santoveña, M. Llabres and J. B. Fariña, J. Pharm. Pharmacol., 51, 385 (1999).
5. J. Park, M.-S. Kim, T. Park, Y. H. Kim and D. H. Shin, Int. J. Biol.Macromol., 166, 221 (2021).
6. A. Hashem, C. O. Aniagor, M. A. F. Afifi, A. Abou-Okeil and S. H.Samaha, Korean J. Chem. Eng., 38, 2157 (2021).
7. S. K. Seidlits, Z. Z. Khaing, R. R. Petersen, J. D. Nickels, J. E. Vanscoy, J. B. Shear and C. E. Schmidt, Biomaterials, 31, 3930 (2010).
8. S. Lim, D. Jeong, M.-R. Ki, S. P. Pack and Y. S. Choi, Korean J.Chem. Eng., 38, 98 (2021).
9. C. Yan and D. J. Pochan, Chem. Soc. Rev., 39, 3528 (2010).
10. O. S. Nnyigide and K. Hyun, Rheol. Acta, 57, 563 (2018).
11. A. Aufderhorst-Roberts, M. D. Hughes, A. Hare, D. A. Head, N.Kapur, D. J. Brockwell and L. Dougan, Biomacromolecules, 21, 4253 (2020).
12. K. Hyun, M. Wilhelm, C. O. Klein, K. S. Cho, J. G. Nam, K. H. Ahn,
S. J. Lee, R. H. Ewoldt and G. H. McKinley, Prog. Polym. Sci., 36,1697 (2011).
13. L. Böcker, P. A. Rühs, L. Böni, P. Fischer and S. Kuster, ACS Biomater. Sci. Eng., 2, 90 (2015).
14. L. Liu, J. You, H. Zhu and W. Tan, Korean J. Chem. Eng., 39, 1927 (2022).
15. O. S. Nnyigide and K. Hyun, Korean J. Chem. Eng., 35, 1969 (2018).
16. O. S. Nnyigide, T. O. Nnyigide and K. Hyun, Carbohydr. Polym.,251, 117061 (2021).
17. Q. Yuan, X. Lu, K. H. Khayat, D. Feys and C. Shi, Mater. Struct.,50, 112 (2016).
18. M. Kim and K. Hyun, Korea-Aust. Rheol. J., 33, 25 (2021).
19. S. H. Lee, S. Y. Kim, R. Salehiyan and K. Hyun, Korea-Aust. Rheol.J., 33, 321 (2021).
20. J. W. Rhim, R. V. Nunes, V. A. Jones and K. R. Swartzel, J. Food Sci.,54, 446 (1989).
21. J.-T. Fu and M. A. Rao, Food Hydrocolloids, 15, 93 (2001).
22. S. A. Madbouly and J. U. Otaigbe, Macromolecules, 39, 4144 (2006).
23. J. Jezek, M. Rides, B. Derham, J. Moore, E. Cerasoli, R. Simler and B. Perez-Ramirez, Adv. Drug Deliv. Rev., 63, 1107 (2011).
24. W. J. Galush, L. N. Le and J. M. R. Moore, J. Pharm. Sci., 101, 1012 (2012).
25. J. H. Gu, R. Qian, R. Chou, P. V. Bondarenko and M. Goldenberg,Pharm. Res., 35, (2018).
26. J. A. Lemkul, W. J. Allen and D. R. Bevan, J. Chem. Inf. Model., 50,2221 (2010).
27. O. S. Nnyigide and K. Hyun, J. Biomolec. Struct. Dynamics, 39, 1106 (2020).
28. O.S. Nnyigide and K. Hyun, Food Hydrocolloids, 103, 105656 (2020).
29. S. Sugio, A. Kashima, S. Mochizuki, M. Noda and K. Kobayashi,Protein Eng., Des. Selection, 12, 439 (1999).
30. S. Sugio, A. Kashima, S. Mochizuki, M. Noda and K. Kobayashi,RCSB PDB:1AO6 (1998).
31. C. Oostenbrink, A. Villa, A. E. Mark and W. F. Van Gunsteren, J.Comput. Chem., 25, 1656 (2004).
32. G. Petekidis, J. Rheol., 58, 1085 (2014).
33. M. C. Childers and V. Daggett, J. Phys. Chem. B, 122, 6673 (2018).
34. K. A. Dill and J. L. MacCallum, Science, 338, 1042 (2012).
35. E. Jacob and R. Unger, Bioinformatics, 23, e225 (2007).
36. A. W. Senior, R. Evans, J. Jumper, J. Kirkpatrick, L. Sifre, T. Green,C. Qin, A. Žídek, A. W. Nelson, A. Bridgland, H. Penedones, S.Petersen, K. Simonyan, S. Crossan, P. Kohli, D. T. Jones, D. Silver,K. Kavukcuoglu and D. Hassabis, Nature, 577, 706 (2020).
37. S. H. Arabi, B. Aghelnejad, C. Schwieger, A. Meister, A. Kerth and D. Hinderberger, Biomater. Sci., 6, 478 (2018).
38. C. Le Bon, T. Nicolai and D. Durand, Macromolecules, 32, 6120 (1999).
39. T. Nicolai, Adv. Colloid Interface Sci., 270, 147 (2019).
40. T.K. Vo, S.-S. Kim and J. Kim, Korean J. Chem. Eng., 39, 1478 (2022).
41. P. R. Avallone, E. Raccone, S. Costanzo, M. Delmonte, A. Sarrica,R. Pasquino and N. Grizzuti, Food Hydrocolloids, 111, 106248 (2021).
42. P. H. Santos, O. H. Campanella and M. A. Carignano, J. Phys.Chem. B, 114, 13052 (2010).
43. O. S. Nnyigide, Y. Oh, H. Y. Song, E.-k. Park, S.-H. Choi and K.Hyun, Korea-Aust. Rheol. J., 29, 101 (2017).
44. V. Normand, S. Muller, J.-C. Ravey and A. Parker, Macromolecules,33, 1063 (2000).
45. Y. Moriyama and K. Takeda, J. Oleo Sci., 66, 521 (2017).
46. N. Fogh-Andersen, P. J. Bjerrum, and O. Siggaard-Andersen, Clin.Chem., 39, 48 (1993).
47. M. Javed, S. Iqbal, I. Fatima, S. Nadeem, A. Mohyuddin, M. Arif, A.Amjad, S. Shahid, F. H. Alshammari, M. I. Alahmdi, E. B. Elkaeed,R. M. Alzhrani, N. S. Awwad, H. A. Ibrahium and M. A. Qayyum,Colloid Interface Sci. Commun., 48, 100623 (2022).
48. P. Sandkühler, J. Sefcik and M. Morbidelli, Langmuir, 21, 2062 (2005).
49. W. Wang, Int. J. Pharm., 289, 1 (2005).
50. T. Zlateva, R. Boteva, B. Salvato and R. Tsanev, Int. J. Biol. Macromol., 26, 357 (1999).
51. J. A. L. da Silva, M. P. Gonçalves and M. A. Rao, Int. J. Biol. Macromol., 17, 25 (1995).
52. A. Stenstam, A. Khan and H. Wennerström, Langmuir, 17, 7513 (2001).
53. M. Heinig and D. Frishman, Nucleic Acids Res., 32, 500 (2004).
54. Z. Cao and J. Wang, J. Biomolec. Struct. Dynamics, 27, 651 (2010).
55. K. K. Patapati and N. M. Glykos, PLoS ONE, 5, e15290 (2010).
56. J. F. Zayas, Functionality of proteins in food, Springer Berlin (2013).
57. O. S. Nnyigide, S.-G. Lee and K. Hyun, Sci. Rep., 9, 10643 (2019).
58. O. S. Nnyigide, S.-G. Lee and K. Hyun, J. Mol. Model., 24, 1 (2018)