ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received April 23, 2023
Revised June 12, 2023
Accepted June 14, 2023
Acknowledgements
This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (No. 2021R1I1A3054572).
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Rheological and molecular dynamics simulation studies of the gelation of human serum albumin in anionic and cationic surfactants

School of Chemical Engineering, Pusan National University, Busan 46241, Korea
kyuhyun@pusan.ac.kr
Korean Journal of Chemical Engineering, August 2023, 40(8), 1871-1881(11), 10.1007/s11814-023-1513-0
downloadDownload PDF

Abstract

We report the gelation of human serum albumin (HSA) of 5-12 wt% concentrations in 0-0.15 M aqueous solutions of a cationic surfactant, cetyltrimethylammonium bromide (CTAB), or an anionic surfactant, sodium dodecyl sulfate (SDS), under isothermal and nonisothermal conditions. Under both conditions, the initial increase in the CTAB concentration (up to 0.075 M) accelerated HSA gelation (marked by decreasing gel times (tgel) for the isothermal case or gel temperature (Tgel) for the nonisothermal case), whereas increasing the SDS concentration inhibited HSA gelation (i.e., increasing tgel or Tgel). The increase and decrease in HSA gelation by CTAB and SDS, respectively, reached a maximum at a surfactant/protein molar ratio of 100. Rheological properties, i.e., storage modulus (G') and loss modulus (G''), exhibited mechanically stable behavior of HSA/CTAB gels over the covered concentration range, whereas HSA/ SDS gels exhibited decreasing mechanical properties with increasing SDS concentration. Molecular dynamics simulation showed that the greater rate of the unfolding of the HSA structure in CTAB than in SDS was behind the rapid gelation kinetics of HSA in CTAB compared with SDS. Our result establishes that cationic CTAB and anionic SDS surfactants exert wide-ranging control over the rheological and kinetic properties of HSA hydrogel

References

1. M. Fasano, S. Curry, E. Terreno, M. Galliano, G. Fanali, P. Narciso,S. Notari and P. Ascenzi, IUBMB Life (International Union of Biochemistry and Molecular Biology: Life), 57, 787 (2005).
2. R. Panahi and M. Baghban-Salehi, Polym. Polym. Compos.: A Ref.Ser., 1561 (2019).
3. P. Hájovská, M. Chytil and M. Kalina, Int. J. Biol. Macromol., 161,738 (2020).
4. A. Oliva, A. Santoveña, M. Llabres and J. B. Fariña, J. Pharm. Pharmacol., 51, 385 (1999).
5. J. Park, M.-S. Kim, T. Park, Y. H. Kim and D. H. Shin, Int. J. Biol.Macromol., 166, 221 (2021).
6. A. Hashem, C. O. Aniagor, M. A. F. Afifi, A. Abou-Okeil and S. H.Samaha, Korean J. Chem. Eng., 38, 2157 (2021).
7. S. K. Seidlits, Z. Z. Khaing, R. R. Petersen, J. D. Nickels, J. E. Vanscoy, J. B. Shear and C. E. Schmidt, Biomaterials, 31, 3930 (2010).
8. S. Lim, D. Jeong, M.-R. Ki, S. P. Pack and Y. S. Choi, Korean J.Chem. Eng., 38, 98 (2021).
9. C. Yan and D. J. Pochan, Chem. Soc. Rev., 39, 3528 (2010).
10. O. S. Nnyigide and K. Hyun, Rheol. Acta, 57, 563 (2018).
11. A. Aufderhorst-Roberts, M. D. Hughes, A. Hare, D. A. Head, N.Kapur, D. J. Brockwell and L. Dougan, Biomacromolecules, 21, 4253 (2020).
12. K. Hyun, M. Wilhelm, C. O. Klein, K. S. Cho, J. G. Nam, K. H. Ahn,
S. J. Lee, R. H. Ewoldt and G. H. McKinley, Prog. Polym. Sci., 36,1697 (2011).
13. L. Böcker, P. A. Rühs, L. Böni, P. Fischer and S. Kuster, ACS Biomater. Sci. Eng., 2, 90 (2015).
14. L. Liu, J. You, H. Zhu and W. Tan, Korean J. Chem. Eng., 39, 1927 (2022).
15. O. S. Nnyigide and K. Hyun, Korean J. Chem. Eng., 35, 1969 (2018).
16. O. S. Nnyigide, T. O. Nnyigide and K. Hyun, Carbohydr. Polym.,251, 117061 (2021).
17. Q. Yuan, X. Lu, K. H. Khayat, D. Feys and C. Shi, Mater. Struct.,50, 112 (2016).
18. M. Kim and K. Hyun, Korea-Aust. Rheol. J., 33, 25 (2021).
19. S. H. Lee, S. Y. Kim, R. Salehiyan and K. Hyun, Korea-Aust. Rheol.J., 33, 321 (2021).
20. J. W. Rhim, R. V. Nunes, V. A. Jones and K. R. Swartzel, J. Food Sci.,54, 446 (1989).
21. J.-T. Fu and M. A. Rao, Food Hydrocolloids, 15, 93 (2001).
22. S. A. Madbouly and J. U. Otaigbe, Macromolecules, 39, 4144 (2006).
23. J. Jezek, M. Rides, B. Derham, J. Moore, E. Cerasoli, R. Simler and B. Perez-Ramirez, Adv. Drug Deliv. Rev., 63, 1107 (2011).
24. W. J. Galush, L. N. Le and J. M. R. Moore, J. Pharm. Sci., 101, 1012 (2012).
25. J. H. Gu, R. Qian, R. Chou, P. V. Bondarenko and M. Goldenberg,Pharm. Res., 35, (2018).
26. J. A. Lemkul, W. J. Allen and D. R. Bevan, J. Chem. Inf. Model., 50,2221 (2010).
27. O. S. Nnyigide and K. Hyun, J. Biomolec. Struct. Dynamics, 39, 1106 (2020).
28. O.S. Nnyigide and K. Hyun, Food Hydrocolloids, 103, 105656 (2020).
29. S. Sugio, A. Kashima, S. Mochizuki, M. Noda and K. Kobayashi,Protein Eng., Des. Selection, 12, 439 (1999).
30. S. Sugio, A. Kashima, S. Mochizuki, M. Noda and K. Kobayashi,RCSB PDB:1AO6 (1998).
31. C. Oostenbrink, A. Villa, A. E. Mark and W. F. Van Gunsteren, J.Comput. Chem., 25, 1656 (2004).
32. G. Petekidis, J. Rheol., 58, 1085 (2014).
33. M. C. Childers and V. Daggett, J. Phys. Chem. B, 122, 6673 (2018).
34. K. A. Dill and J. L. MacCallum, Science, 338, 1042 (2012).
35. E. Jacob and R. Unger, Bioinformatics, 23, e225 (2007).
36. A. W. Senior, R. Evans, J. Jumper, J. Kirkpatrick, L. Sifre, T. Green,C. Qin, A. Žídek, A. W. Nelson, A. Bridgland, H. Penedones, S.Petersen, K. Simonyan, S. Crossan, P. Kohli, D. T. Jones, D. Silver,K. Kavukcuoglu and D. Hassabis, Nature, 577, 706 (2020).
37. S. H. Arabi, B. Aghelnejad, C. Schwieger, A. Meister, A. Kerth and D. Hinderberger, Biomater. Sci., 6, 478 (2018).
38. C. Le Bon, T. Nicolai and D. Durand, Macromolecules, 32, 6120 (1999).
39. T. Nicolai, Adv. Colloid Interface Sci., 270, 147 (2019).
40. T.K. Vo, S.-S. Kim and J. Kim, Korean J. Chem. Eng., 39, 1478 (2022).
41. P. R. Avallone, E. Raccone, S. Costanzo, M. Delmonte, A. Sarrica,R. Pasquino and N. Grizzuti, Food Hydrocolloids, 111, 106248 (2021).
42. P. H. Santos, O. H. Campanella and M. A. Carignano, J. Phys.Chem. B, 114, 13052 (2010).
43. O. S. Nnyigide, Y. Oh, H. Y. Song, E.-k. Park, S.-H. Choi and K.Hyun, Korea-Aust. Rheol. J., 29, 101 (2017).
44. V. Normand, S. Muller, J.-C. Ravey and A. Parker, Macromolecules,33, 1063 (2000).
45. Y. Moriyama and K. Takeda, J. Oleo Sci., 66, 521 (2017).
46. N. Fogh-Andersen, P. J. Bjerrum, and O. Siggaard-Andersen, Clin.Chem., 39, 48 (1993).
47. M. Javed, S. Iqbal, I. Fatima, S. Nadeem, A. Mohyuddin, M. Arif, A.Amjad, S. Shahid, F. H. Alshammari, M. I. Alahmdi, E. B. Elkaeed,R. M. Alzhrani, N. S. Awwad, H. A. Ibrahium and M. A. Qayyum,Colloid Interface Sci. Commun., 48, 100623 (2022).
48. P. Sandkühler, J. Sefcik and M. Morbidelli, Langmuir, 21, 2062 (2005).
49. W. Wang, Int. J. Pharm., 289, 1 (2005).
50. T. Zlateva, R. Boteva, B. Salvato and R. Tsanev, Int. J. Biol. Macromol., 26, 357 (1999).
51. J. A. L. da Silva, M. P. Gonçalves and M. A. Rao, Int. J. Biol. Macromol., 17, 25 (1995).
52. A. Stenstam, A. Khan and H. Wennerström, Langmuir, 17, 7513 (2001).
53. M. Heinig and D. Frishman, Nucleic Acids Res., 32, 500 (2004).
54. Z. Cao and J. Wang, J. Biomolec. Struct. Dynamics, 27, 651 (2010).
55. K. K. Patapati and N. M. Glykos, PLoS ONE, 5, e15290 (2010).
56. J. F. Zayas, Functionality of proteins in food, Springer Berlin (2013).
57. O. S. Nnyigide, S.-G. Lee and K. Hyun, Sci. Rep., 9, 10643 (2019).
58. O. S. Nnyigide, S.-G. Lee and K. Hyun, J. Mol. Model., 24, 1 (2018)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로