ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received October 1, 2022
Revised February 11, 2023
Accepted February 27, 2023
Acknowledgements
This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) grant numbers 119M433 and 118C143.
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Sustainable production of acrolein over highly stable and selective WO3 over SiO2-TiO2 catalysts

Istanbul University-Cerrahpaşa, Faculty of Engineering, Chemical Engineering Department, Avcılar, 34320 Istanbul, Turkey
Korean Journal of Chemical Engineering, August 2023, 40(8), 1882-1891(10), 10.1007/s11814-023-1406-2
downloadDownload PDF

Abstract

The effects of the addition of colloidal silica (cSiO2) and solvents used in the catalyst preparation on the activity and stability of WO3-TiO2 catalysts are reported in this paper. The highly stable and selective WO3 supported cSiO2-TiO2 catalysts were prepared and tested in the vapor-phase glycerol oxy-dehydration. WO3-TiO2 catalysts with and without cSiO2 were characterized by XRD, SEM, NH3-TPD, infrared spectroscopy of pyridine (FTIR-Py), XPS, RAMAN, and N2 adsorption-desorption (BET). The highest medium strength acidity and optimum Brønsted to Lewis acid site ratio of WO3 catalysts were achieved upon the addition of colloidal silica (cSiO2) onto TiO2 support. The medium strength acidity of Brønsted acid sites was responsible for the improved acrolein selectivity and stability. The other major factors in glycerol conversion and acrolein selectivity were the glycerol content and liquid hourly space velocity. The yield to acrolein was up to 70% and kept almost constant in a 50 h continuous run at 300 o C. The gradual decrease in glycerol conversion was due to the build-up of oxygen-containing carbonaceous materials deposited on the catalyst surface.

References

1. OECD-FAO OECD-FAO Agricultural Outlook 2021-2030, ISBN 978-92-5-134608-2 (2021).
2. A. Corma, G. W. Huber, L. Sauvanaud and P. O’Connor, J. Catal.,257, 163 (2008).
3. M. Pagliaro and M. Rossi, The Future of Glycerol: RSC Publishing, Chapter 7 Dehydration, ISBN 9781849730464 (2010).
4. M. Checa, S. Nogales-Delgado, V. Montes and J. M. Encinar, Catalysts, 10, 1 (2020).
5. S. T. Wu, Q. M. She, R. Tesser, M. D. Serio and C. H. Zhou, Catal.Rev. - Sci. Eng., 62, 481 (2020).
6. D. Sun, Y. Yamada, S. Sato and W. Ueda, Green Chem., 19, 3186 (2017).
7. S. Chozhavendhan, G. Karthiga Devi, B. Bharathiraja, R. Praveen Kumar and S. Elavazhagan, Assessment of crude glycerol utilization for sustainable development of biorefineries, Elsevier Inc. (2020).
8. M. Dalil, D. Carnevali, J. L. Dubois and G. S. Patience, Chem. Eng.J., 270, 557 (2015).
9. L. Shen, H. Yin, A. Wang, Y. Feng, Y. Shen, Z. Wu and T. Jiang,Chem. Eng. J., 180, 277 (2012).
10. I. Martinuzzi, Y. Azizi, O. Zahraa and J. P. Leclerc, Chem. Eng. Sci.,134, 663 (2015).
11. I. Martinuzzi, Y. Azizi, J. F. Devaux, S. Tretjak, O. Zahraa and J. P.Leclerc, Chem. Eng. Sci., 116, 118 (2014).
12. C. A. G. Quispe, C. J. R. Coronado J. A. Carvalho, Renew. Sustain.Energy Rev., 27, 475 (2013).
13. I. Pala-Rosas, J. L. Contreras, J. Salmones, B. Zeifert, R. LópezMedina, J. Navarrete-Bolaños, S. Hernández-Ramírez, J. PérezCabrera and A.A. Fragoso-Montes De Oca, Catalysts, 11, 1 (2021).
14. I. Pala Rosas, J. Luis Contreras Larios, B. Zeifert and J. Salmones Blásquez, Glycerine Prod. Transform. - An Innov. Platf. Sustain.Biorefinery Energy, 1 (2019).
15. T. M. Neves, J. O. Fernandes, L. M. Lião, E. Deise da Silva, C.Augusto da Rosa and V. B. Mortola, Micropor. Mesopor. Mater.,275, 244 (2019).
16. E. Tsukuda, S. Sato, R. Takahashi and T. Sodesawa, Catal. Commun., 8, 1349 (2007).
17. A. Abdullah, A. Z. Abdullah, M. Ahmed, P. U. Okoye and M. Shahadat, Can. J. Chem. Eng., 1 (2021).
18. B. Katryniok, S. Paul, M. Capron and F. Dumeignil, ChemSusChem, 2, 719 (2009).
19. M. Dalil, D. Carnevali, M. Edake, A. Auroux, J. L. Dubois and G. S.Patience, J. Mol. Catal. A Chem., 421, 146 (2016.
20. M. Dalil, M. Edake, C. Sudeau, J. L. Dubois and G. S. Patience,Appl. Catal. A Gen., 522, 80 (2016).
21. C. Hulteberg, A. Leveau and J. G. M. Brandin, Top. Catal., 60, 1462 (2017).
22. M. Massa, A. Andersson, E. Finocchio, G. Busca, F. Lenrick and L. R. Wallenberg, J. Catal., 297, 93 (2013).
23. Z. Babaei, A. Najafi Chermahini and M. Dinari, J. Colloid Interface Sci., 563, 1 (2020).
24. R. Liu, T. Wang, D. Cai and Y. Jin, Ind. Eng. Chem. Res., 53, 8667 (2014).
25. S. Musić, N. Filipović-Vinceković and L. Sekovanić, Brazilian J. Chem.Eng., 28, 89 (2011).
26. X. Liu, H. Chen, X. Wu, L. Cao, P. Jiang, Q. Yu and Y. Ma, Catal.Sci. Technol., 9, 3711 (2019).
27. M. Mokhtarifar, D. T. Nguyen, M. V. Diamanti, R. Kaveh, M. Asa,M. Sakar, M. P. Pedeferri and T. O. Do, New J. Chem., 44, 20375 (2020).
28. C. Liebig, S. Paul, B. Katryniok, C. Guillon, J. L. Couturier, J. L.Dubois, F. Dumeignil and W. F. Hoelderich, Appl. Catal. B Environ., 132-133, 170 (2013).
29. H. Yang, D. Zhang and L. Wang, Mater. Lett., 57, 674 (2002).
30. J. H. Pan and W. I. Lee, Chem. Mater., 18, 847 (2006).
31. A. Tagliaferro, M. Rovere, E. Padovano, M. Bartoli M. Giorcelli,Nanomaterials, 10, 1 (2020).
32. E. I. Ross-Medgaarden and I. E. Wachs, J. Phys. Chem. C, 111,15089 (2007).
33. G.D. Panagiotou, T. Petsi, K. Bourikas, C. Kordulis and A. Lycourghiotis, J. Catal., 262, 266 (2009).
34. A. M. Hirt, J. Phys. Chem., 95, 991 (1991).
35. P. Lauriol-Garbay, J. M. M. Millet, S. Loridant, V. Bellire-Baca and P. Rey, J. Catal., 280, 68 (2011).
36. X. C. Jiang, C. H. Zhou, R. Tesser, M. Di Serio, D. S. Tong and J. R.Zhang, Ind. Eng. Chem. Res., 57, 10736 (2018).
37. F. Cavani, S. Guidetti, L. Marinelli, M. Piccinini, E. Ghedini and . Signoretto, Appl. Catal. B Environ., 100, 197 (2010).
38. T. Ma, Z. Yun, W. Xu, L. Chen, L. Li, J. Ding and R. Shao, Chem.Eng. J., 294, 343 (2016).
39. M. Akizuki and Y. Oshima, Ind. Eng. Chem. Res., 51, 12253 (2012).
40. A. Talebian-Kiakalaieh and N. A. S. Amin, Chem. Eng. Trans., 56,655 (2017).
41. A. Chieregato, M. D. Soriano, F. Basile, G. Liosi, S. Zamora, P. Concepción, F. Cavani and J. M. López Nieto, Appl. Catal. B Environ.,
150-151, 37 (2014).
42. X. Feng, Y. Yao, Q. Su, L. Zhao, W. Jiang, W. Ji and C. T. Au, Appl.Catal. B Environ., 164, 31 (2015).
43. J.-L. Dubois, K. Okumura, Y. Kobayash and R. Hiraoka, Improved Process of Dehydration Reactions, WO2013017904 (2013).
44. J.-L. Dubois, Method for Synthesis of Acrolein from Glycerol US 2010/0274038A1 (2010).
45. R. Znaiguia, L. Brandhorst, N. Christin, V. Bellière Baca, P. Rey,J. M. M. Millet and S. Loridant, Micropor. Mesopor. Mater., 196, 97 (2014).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로