ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received November 20, 2022
Revised March 11, 2023
Accepted May 1, 2023
Acknowledgements
This work was supported by the Graduate School of Post Plastic specialization of Korea Environmental Industry & Technology Institute grant funded by Ministry of Environment, Republic of Korea
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Electrospun PVDF-HFP/PAN bicomponent nanofibers as separators in lithium-ion batteries with high thermal stability and electrolyte wettability

1Department of Chemical Engineering, Hanyang University, Seoul 04763, Korea 2Carbon Neutral Technology R&D Department, Korea Institute of Industrial Technology, Cheonan, Chungnam 31056, Korea 3Department of Materials Science and Engineering, Inha University, Incheon 22212, Korea 4Grapsil, Korea Institute of Industrial Technology, Cheonan, Chungnam 31056, Korea
seongoh@hanyang.ac.kr, huhoon@kitech.re.kr
Korean Journal of Chemical Engineering, August 2023, 40(8), 1901-1911(11), 10.1007/s11814-023-1486-z
downloadDownload PDF

Abstract

Battery reliability is emerging as a new challenge due to the thermal stability and electrolyte wettability of polyolefin separators used in lithium-ion batteries. In this study, a method to improve the thermal stability and electrolyte wettability of a polyolefin separator is proposed. Bicomponent nanofibers were successfully fabricated by electrospinning poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) with high ionic conductivity and polyacrylonitrile (PAN) with excellent thermal stability. The nanofiber-based separator of PVDF-HFP/PAN exhibited high porosity (60-76%), electrolyte uptake (2,000%), and thermal stability (5%<shrinkage, at 200 o C) than conventional polyolefin separator. The battery using the bicomponent nanofiber separator composed of PVDF-HFP and PAN showed better cycle performance (421 mAh/g, after 80 cycle), efficiency (99.6%), and c-rate performance (418 mAh/g, 3C) than the battery using polyolefin separator.

References

1. B. Scrosati and J. Garche, J. Power Sources, 195(9), 2419 (2010).
2. J. Goodenough and K. S. Park, J. Am. Chem. Soc., 135(4), 1167 (2013).
3. M. Yang and H. Junbo, Membranes, 2(3), 367 (2012).
4. J. Tarascon and A. Michel, Nature, 414, 359 (2001).
5. J. Hassoun, Adv. Mater., 21(47), 4807 (2009).
6. S. Megahed and S. Bruno, J. Power Sources, 51(1-2), 79 (1994).
7. J. Choi, Nanoscale, 5(8), 3230 (2013).
8. J. B. Goodenough and K. Youngsik, Chem. Mater., 22(3), 587 (2010).
9. F. Gao, Int. J. Electrochem. Sci., 15, 1391 (2020).
10. J. Choi and J. K. Patrick, Curr. Opin. Electrochem., 31, 100858 (2022).
11. M. F. Lagadec, Z. Raphael and W. Vanessa, Nature Energy, 4(1), 16 (2019).
12. G. Venugopal, J. Power Sources, 77(1), 34 (1999).
13. S. S. Zhang, J. Power Sources, 164(1), 351 (2007).
14. X. Huang, J. Solid State Electrochem., 15(4), 649 (2011).
15. W. Yi, J. Power Sources, 189(1), 616 (2009).
16. P. Kritzer, J. Power Sources, 161(2), 1335 (2006).
17. J. Miao, J. Nanosci. Nanotechnol., 10(9), 5507 (2010).
18. W. Chen, J. Power Sources, 273, 1127 (2015).
19. H. Zhao, Mater. Lett., 236, 101 (2019).
20. D. Wu, Electrochim. Acta, 176, 727 (2015).
21. Y. Zhai, J. Mater. Chem. A, 2(35), 14511 (2014).
22. Z. Liu, Macromol. Mater. Eng., 298(7), 806 (2013).
23. L. Wang, Electrochem. Acta, 300, 263 (2019).
24. M. Cai, Nanomaterials, 9(1), 39 (2018).
25. M. Cai, Polymers, 11(1), 185 (2019).
26. J. C. Barbosa, Membranes, 8(3), 45 (2018).
27. S. Yang, RSC Adv., 8(41), 23390 (2018).
28. M. Cai, J. Power Sources, 461, 228123 (2020).
29. T. Evans, J. Power Sources, 292, 1 (2015).
30. D. J. Liaw, Prog. Polym. Sci., 37(7), 907 (2012).
31. L. Wang, Compos. Commun., 16, 150 (2019).
32. J. Hao, J. Membr. Scie., 428, 11 (2013).
33. J. Ding, J. Electrochem. Soc., 159(9), A1474 (2012).
34. Z. Zhong, Mater. Sci. Eng.: B, 177(1), 86 (2012).
35. Z. Zhong, Ionic, 18(1), 47 (2012).
36. O. Fu, Energy Technol., 6(1), 144 (2018).
37. T. H. Q. Zhang and S. Kuangzheng, Mater. Lett., 245, 10 (2019).
38. H. Liu, J. Solid State Electrochem., 22(11), 3579 (2018).
39. Z. Y. Z. Liang and L. Yanxi, Energies, 12(17), 3391 (2019).
40. J. Zhao, Coatings, 8(12), 437 (2018).
41. J. Zhang, Sci. Rep., 4(1), 1 (2014).
42. X. Huang and H. Jonathon, J. Membr. Sci., 425, 163 (2013).
43. Y. Baskakova and O. Yarmolenko, Russ. Chem. Rev., 81, 367 (2012).
44. J. Oh, H. Jo, H. Lee, H. K. Kim, Y. M. Lee and M. H. Ryou, J. Power Sources, 430, 130 (2019)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로