ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received August 25, 2022
Revised January 30, 2023
Accepted February 27, 2023
Acknowledgements
The authors thank the financial support from the National Natural Science Foundation of China (22278100); Training Plan for Young Innovative Talents of Ordinary Undergraduate Colleges and Universities in Heilongjiang Province (No. UNPYSCT-2015046).
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Sludge deep dewatering enhanced by zero-valent iron/peroxymonosulfate/ walnut shell powder

1School of Civil Engineering and Transportation, Hebei University of Technology, Tianjin 300401, China 2School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040 , Heilongjiang, China
zyphit@hebut.edu.cn
Korean Journal of Chemical Engineering, August 2023, 40(8), 1919-1927(9), 10.1007/s11814-023-1407-1
downloadDownload PDF

Abstract

To enhance sludge dewatering performance, Zero-valent iron/peroxymonosulfate/walnut shell powder was used to condition sludge at 55 o C and pH=3 (ZVI/PMS/WSP-T/pH), and the dewatering mechanism was also analyzed. The results showed that the capillary suction time (CST) and water content of sludge cake (Wc) were reduced to 6.8 s and 62.1%, respectively, and net sludge yield (YN) increased to 58.74 kg/(m2 ·h) after being treated by ZVI/PMS/ WSP-T/pH. The thermal and acid conditions could promote the corrosion of Fe2+ from ZVI and enhance PMS to produce more SO4 • and ·OH. The radicals combined with acid and thermal hydrolysis could efficiently reduce extracellular polymeric substances (EPS), especially tightly bound EPS (TB-EPS), destroy sludge floc and release bound water. The stripping off of EPS and neutralization of Fe3+, Fe2+ and H+ caused the zeta potential to increase to 0.91 mV. The flocculation of cations and adsorption of WSP further increased the fractal dimension to 1.71. Moreover, the rigid and porosity structure of WSP increased sludge incompressibility and formed channels for water. Under the combined oxidation, acid/thermal hydrolysis, re-aggregation and skeleton builder functions, the sludge dewatering performance was greatly improved.

References

1. X. H. Dai, Science, 72(06), 30 (2020).
2. B. D. Cao, T. Zhang, W. J. Zhang and D. S. Wang, Water Res., 189,116650 (2021).
3. Y. P. Zhang, T. T. Li, J. Y. Tian, H. C. Zhang, F. Li and J. H. Pei, J.Environ. Sci., 113, 152 (2022).
4. X. Y. Fan, Y. L. Wang, D. X. Zhang, Y. J. Guo, S. H. Gao, E. R. Li and H. L. Zheng, J. Environ. Sci., 91, 73 (2020).
5. T. Tunçal and A. S. Mujumdar, Dry. Technol., 41(3), 339 (2022).
6. T. Tunçal, Dry. Technol., 40(10), 2128 (2021).
7. M. Basuvaraj, J. Fein and S. N. Liss, Water Res., 82, 104 (2015).
8. B. B. Lan, R. F. Jin, G. F. Liu, B. Dong, J. T. Zhou and D. F. Xing,Water Environ. Res., 93(9), 1680 (2021).
9. U. Menon, N. Suresh, G. George, A. M. Ealias and M. P. Saravanakumar, Chem. Eng. J., 382, 123035 (2020).
10. L. Y. Liu, H. Yan, C. Yang and G. R. Zhu, RSC Adv., 8(52), 29756 (2018).
11. G. B. Gholikandi, N. Zakizadeh and H. Masihi, J. Environ. Manage., 206, 523 (2018).
12. T. Tunçal, İ. Ç. Deniz and U. Orhan, Appl. Catal. B-Environ., 179,171 (2015).
13. D. W. T. Li, J. R. Lv, Z. M. Qiang and M. K. Li, J. Hazard. Mater.,391, 121855 (2020).
14. C. G. Liu, B. Wu and X. E. Chen, Chem. Eng. J., 335, 865 (2018).
15. C. G. Liu, Chem. Eng. J., 359, 217 (2019).
16. X. Ling, M. J. Chen, A. H. Cai, H. L. Sun, S. L. Xu, L. Wang, X. Y.Li and J. Deng, J. Environ. Manage., 318, 115646 (2022).
17. L. H. Yuan, H. X. Liu, Y. J. Lu, Y. Lu and D. B. Wang, Chemosphere,303, 135104 (2022).
18. J.L. Liang, L. Zhang, W.W. Yan and Y. Zhou, Water Res., 184, 116149 (2020).
19. R. H. Ramachandra and C. P. Devatha, Environ. Sci. Pollut. R.,27(11), 11870 (2020).
20. H. Wei, B. Q. Gao, J. Ren, A. M. Li and H. Yang, Water Res., 143,608 (2018).
21. Q. X. Dai, L. P. Ma, N. Q. Ren, P. Ning, Z. Y. Guo, L. G. Xie and H. J. Gao, Water Res., 142, 337 (2018).
22. W. Wu, Z. Zhou, J. Z. Yang, G. Chen, J. Yao, C. Q. Tu, X. D. Zhao,Z. Qiu and Z. C. Wu, Water Res., 160, 167 (2019).
23. Y. Wu, P. Y. Zhang, G. M. Zeng, J. Ye, H. B. Zhang, W. Fang and J. B. Liu, ACS Sustainable Chem. Eng., 4(10), 5711 (2016).
24. X. X. Geng, S. Y. Lv, J. Yang, S. H. Cui and Z. H. Zhao, J. Environ.Manage., 280, 111749 (2021).
25. B. W. Wang and Y. Wang, Sci. Total Environ., 831, 154906 (2022).
26. APHA, Standard methods for the examination of water and wastewater, 21st ed. Washington: American Public Health Association (2015).
27. J. Liu, Q. Yang, D. B. Wang, X. M. Li, Y. Zhong, X. Li, Y. C. Deng,L. Q. Wang, K. X. Yi and G. M. Zeng, Bioresour. Technol., 206, 134 (2016).
28. K. Grintzalis, C. D. Georgiou and Y. J. Schneider, Anal. Biochem.,480, 28 (2015).
29. T. Zavrel, P. Ocenasova, M. A. Sinetova and J. cerveny, Bio-protocol, 8(15), e2966 (2018).
30. S. Felz, P. Vermeulen, M. C. M. Van Loosdrecht and Y. M. Lin,Water Res., 157, 201 (2019).
31. Z. H. Li, Y. Guo, Z. Y. Hang, T. Y. Zhang and H. Q. Yu, Water Res.,178, 115834 (2020).
32. H. Wei, J. Ren, A. M. Li and H. Yang, Chem. Eng. J., 349, 737 (2018).
33. Y. F. Li, L. Y. Pan, Y. Q. Zhu, Y. Y. Yu, D. B. Wang, G. J. Yang, X. Z.Yuan, X. R. Liu, H. L. Li and J. Zhang, Water Res., 163, 114912 (2019).
34. X. Zhou, Q. L. Wang, G. G. Jiang, P. Liu and Z. G. Yuan, Bioresour.Technol., 185, 416 (2015).
35. C. G. Liu, B. Wu and X. E. Chen, Chem. Eng. J., 392, 124850 (2020).
36. M. Q. Wang, Y. Wu, B. R. Yang, P. Y. Deng, Y. H. Zhong, C. Fu,Z. H. Lu, P. Y. Zhang, J. Q. Wang and Y. Y. Qu, Sci. Rep-UK, 10(1),17230 (2020).
37. X. D. Zhang, P. Ye and Y. J. Wu, J. Environ. Manage., 321, 115938 (2022).
38. W. Burger, K. Krysiak-Baltyn, P. J. Scales, G. J. O. Martin, A. D.Stickland and S. L. Gras, Water Res., 123, 578 (2017).
39. Y. F. Li, X. Z. Yuan, D. B. Wang, H. Wang, Z. B. Wu, L. B. Jiang, D.Mo, G. J. Yang, R. P. Guan and G. M. Zeng, Bioresour. Technol., 262,294 (2018).
40. M. Banerjee, N. Bar and S. K. Das, Int. J. Environ. Res., 15(5), 875 (2021).
41. L. X. Li, C. Peng, L. H. Deng, F. G. Zhang, D. Wu, F. Ma and Y. Liu,J. Environ. Manage., 301, 113926 (2022).
42. P. Hu, S. H. Zhuang, S. H. Shen, Y. H. Yang and H. Yang, Water Res., 189, 116578 (2021).
43. X. C. Zhang, H. S. Kang, Q. R. Zhang, X. M. Hao, X. Han, W. Zhang and T. F. Jiao, J. Environ. Manage., 230, 14 (2019).
44. S. D. Guo, F. S. Qu, A. Ding, J. G. He, H. R. Yu, L. M. Bai, G. B. Li and H. Liang, RSC Adv., 5(54), 43065 (2015).
45. B. D. Cao, W. J. Zhang, Q. D. Wang, Y. R. Huang, C. R. Meng and D. S. Wang, Water Res., 105, 615 (2016).
46. L. L. Wei, X. H. Xia, F. Y. Zhu, Q. Y. Li, M. Xue, J. J. Li, B. Sun, J. Q.Jiang and Q. L. Zhao, Water Res., 181, 115903 (2020).
47. J. Y. Guo, Q. F. Gao, Y. H. Chen, Q. L. He, H. B. Zhou, J. B. Liu, C. W.Zou and W. J. Chen, J. Environ. Manage., 288, 112476 (2021).
48. M. K. Uddin and A. Nasar, Sci. Rep-UK, 10(1), 7983 (2020).
49. C. G. Liu, X. E. Chen and H. T. Cai, Chem. Eng. J., 400, 125954 (2020).
50. F. Lin, X. L. Zhu, J. G. Li, P. R. Yu, Y. Luo and M. R. Liu, Chemosphere, 235, 679 (2019).
51. V. H. P. To, T. V. Nguyen, H. Bustamante and S. Vigneswaran, Sep.Purif. Technol., 239, 116557 (2020).
52. X. R. Liu, X. D. Huang, Y. X. Wu, Q. X. Xu, M. T. Du, D. B. Wang,Q. Yang, Y. W. Liu, B.-J. Ni, G. J. Yang, F. Yang and Q. L. Wang,Chem. Eng. J., 387, 124147 (2020).
53. S. Wang, X. X. Ma, Y. Y. Wang, G. C. Du, J.-H. Tay and J. Li, Bioresour. Technol., 273, 350 (2019).
54. H. T. Fan, X. H. Liu, H. Wang, Y. P. Han, L. Qi and H. C. Wang,Chemosphere, 169, 586 (2017).
55. N. Wang, W. J. Zhang, B. D. Cao, P. Yang, F. G. Cui and D. S. Wang,Chem. Eng. J., 350, 660 (2018).
56. J. S. Zhang, N. Li, X. H. Dai, W. Q. Tao, I. R. Jenkinson and Z. Li,Water Res., 131, 177 (2018).
57. Y. D. Zheng, M. Y. Xing, L. Z. Y. Cai, T. Xiao, Y. F. Lu and J. Z.Jiang, Sci. Total Environ., 581, 573 (2017).
58. B. R. Wu, H. Wang, X. H. Dai and X. L. Chai, Water Res., 202,117461 (2021)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로