ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received March 9, 2023
Revised April 12, 2023
Accepted April 17, 2023
Acknowledgements
This work was supported by grants (2018R1D1A1B07041887) and (2021R1A2C2011164) from the National Research Foundation of Korea
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Thermoresponsive, dually cross-linked elastin-like-polypeptide (ELP) micelle hydrogel with recovery properties

Department of Chemical Engineering, Hongik University, Seoul 04066, Korea
E-mail: jiwon@hongik.ac.kr
Korean Journal of Chemical Engineering, August 2023, 40(8), 1954-1962(9), 10.1007/s11814-023-1473-4
downloadDownload PDF

Abstract

Thermoresponsive protein-based hydrogels have been widely used due to their high potential in biomedical fields. Elastin-like polypeptides (ELPs) are one of the proteins that show lower critical solution temperature (LCST) behavior, resulting in self-assembly above critical micellular temperature (CMT). Here, we utilized ABC-type blocky ELPs to form hydrogels by introducing cross-linking sites, resulting in good mechanical properties. The hydrogels showed temperature-dependent viscoelasticity due to their structure change. Also, the recovery process of ELP-based hydrogels after large deformation is significantly dependent on the types of cross-linking (i.e., ionic, covalent, or ioniccovalent hybrid)

References

1. C. Zhang, S. Jin, S. Li, X. Xue, J. Liu, Y. Huang, Y. Jiang, W. Chen,G. Zou and X. J. Liang, ACS Appl. Mater. Interfaces, 6, 5212 (2014).
2. N. Annabi, S. M. Mithieux, G. Camci-Unal, M. R. Dokmeci, A. S.Weiss and A. Khademhosseini, Biochem. Eng. J., 77, 110 (2013).
3. J. W. Ro, H. Choi, T. Y. Heo, S. H. Choi and J. I. Won, Biotechnol.Bioprocess Eng., 23, 627 (2018).
4. B. L. LeSavage, N. A. Suhar, C. M. Madl and S. C. Heilshorn, Jove,135, e57739 (2018).
5. C. Chung, K. J. Lampe and S. C. Heilshorn, Biomacromolecules, 13,3912 (2012).
6. A. Hennig, G. J. Gabriel, G. N. Tew and S. Matile, J. Am. Chem.Soc., 130, 10338 (2008).
7. L. Ghasemi-Mobarakeh, M. P. Prabhakaran, M. Morshed, M. H.Nasr-Esfahani and S. Ramakrishna, Mater. Sci. Eng. C, 30, 1129 (2010).
8. D.W. Urry and T.M. Parker, J. Bioact. Compat. Polym., 6, 263 (1991).
9. Y. N. Zhang, R. K. Avery, Q. Vallmajo-Martin, A. Assmann, A. Vegh,A. Memic, B. D. Olsen, N. Annabi and A. Khademhosseini, Adv.Funct. Mater., 25, 4814 (2015).
10. L. Li, S. Teller, R. J. Clifton, X. Jia and K. L. Kiick, Biomacromolecules, 12, 2302 (2011).
11. B. A. Cox, B. C. Starcher and D. W. Urry, J. Biol. Chem., 249, 997 (1974).
12. D. W. Urry, K. Okamoto, R. D. Harris, C. F. Hendrix and M. M.Long, Biochemistry, 15, 4083 (1976).
13. D. W. Urry, J. Phys. Chem. B, 101, 11007 (1997).
14. D. H. T. Le and A. Sugawara-Narutaki, Mol. Syst. Des. Eng., 4, 545 (2019).
15. J. A. MacKay, D. J. Callahan, K. N. FitzGerald and A. Chilkoti, Biomacromolecules, 11, 2873 (2010).
16. D. E. Meyer and A. Chilkoti, Biomacromolecules, 5, 846 (2004).
17. L. Shi, P. Ding, Y. Wang, Y. Zhang, D. Ossipov and J. Hilborn, Macromol. Rapid Commun., 40, 1800837 (2019).
18. D. L. Taylor and M. in het Panhuis, Adv. Mater., 28, 9060 (2016).
19. J. Y. Sun, X. Zhao, W. R. K. Illeperuma, O. Chaudhuri, K. H. Oh,D. J. Mooney, J. J. Vlassak and Z. Suo, Nature, 489, 133 (2012).
20. M. Zhong, Y. T. Liu, X. Y. Liu, F. K. Shi, L. Q. Zhang, M. F. Zhu and X. M. Xie, Soft Matter, 12, 5420 (2016).
21. S. Gu, G. Cheng, T. Yang, X. Ren and G. Gao, Macromol. Mater.Eng., 302, 1700402 (2017).
22. J. R. McDaniel, J. A. MacKay, F. G. Quiroz and A. Chilkoti, Biomacromolecules, 11, 944 (2010).
23. J. E. Park and J. I. Won, Biotechnol. Bioprocess Eng., 14, 662 (2009).
24. W. Hassouneh, S. R. MacEwan and A. Chilkoti, Methods Enzymol., 502, 215 (2012).
25. W. Bode, F. X. Gomis-Ruth and W. Stockler, FEBS Lett., 331, 134 (1993).
26. E. Hadler-Olsen, B. Fadnes, I. Sylte, L. Uhlin-Hansen and J.O. Winberg, FEBS J., 278, 28 (2011).
27. A. Vaish, S. G. Roy and P. De, Polymer, 58, 1 (2015).
28. S. M. Janib, M. F. Pastuszka, S. Aluri, Z. Folchman-Wagner, P. Y.Hsueh, P. Shi, Y. A. Lin, H. Cui and J. A. MacKay, Polym. Chem.,5, 1614 (2014).
29. A. Ghoorchian, J. T. Cole and N. B. Holland, Macromolecules, 43,4340 (2010).
30. W. Kim, J. Thevenot, E. Ibarboure, S. Lecommandoux and E. L.Chaikof, Angew. Chem., 122, 4353 (2010).
31. M. Sahn, T. Yildirim, M. Dirauf, C. Weber, P. Sungur, S. Hoeppener and U. S. Schubert, Macromolecules, 49, 7257 (2016).
32. D. Kurkova, J. Kriz, P. Schmidt, J. Dybal, J. C. Rodriguez-Cabello and M. Alonso, Biomacromolecules, 4, 589 (2003).
33. A. Junger, D. Kaufmann, T. Scheibel and R. Weberskirch, Macromol. Biosci., 5, 494 (2005).
34. C. Xiao, J. Ding, L. Ma, C. Yang, X. Zhuang and X. Chen, Polym.Chem., 6, 738 (2015).
35. E. Meco and K. J. Lampe, Biomacromolecules, 20, 1914 (2019).
36. S. Sun and P. Wu, Macromolecules, 46, 236 (2013).
37. J. Spevacek, J. Dybal, L. Starovoytova, A. Zhigunov and Z. Sedlakova, Soft Matter, 8, 6110 (2012).
38. G. Le Fer, A. L. Wirotius, A. Brulet, E. Garanger and S. Lecommandoux, Biomacromolecules, 20, 254 (2018).
39. Q. Li, D. G. Barrett, P. B. Messersmith and N. Holten-Andersen,ACS Nano, 10, 1317 (2016).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로