Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received September 12, 2022
Revised April 5, 2023
Accepted April 17, 2023
- Acknowledgements
- This work was financially supported by the Henan province basis and advancing technology research project (142300410224).
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Zirconium-functionalized loofah biocomposite for adsorption catechol and amoxicillin
Abstract
Cheap and green loofah as the substrate material was modified with epichlorohydrin and iminodiacetic
acid (IDA) to obtain iminodiacetic acid-modified loofah (IDA-LG), and loaded zirconium (IV) onto IDA-LG by a simple complexation reaction to obtain novel biocomposite: zirconium-modified loofah (Zr-IDA-LG). The influence factors and adsorption mechanisms were explored by characterization and adsorption study toward catechol and amoxicillin
in batch and fixed-bed modes. The study found that the surface morphology, specific surface area and internal functional groups of the adsorbent changed significantly, the isoelectric point of Zr-IDA-LG was shifted in the acidic direction (2.68 for Zr-IDA-LG) after the modification. This showed that modification of the loofah was successful. The
adsorption of catechol and amoxicillin by Zr-IDA-LG showed that the pH range of the material was wide, and the
coexisting ions had adverse effects on adsorption. The maximum adsorption capacity of Zr-IDA-LG from Langmuir
model was 44.9±11.2 mg·g1
for catechol and 16.8±1.2 mg·g1
for amoxicillin at 293 K. The adsorption isotherm and
kinetic model of Zr-IDA-LG manifested that the adsorption process was dominated by monomolecular layer adsorption for catechol and monomolecular layer adsorption for amoxicillin with the presence of heterogeneous adsorption.
Both adsorption processes were accompanied by ion exchange. The higher column and lower flow velocity were favorable for the fixed bed adsorption, while the Yan model could fit the fixed bed adsorption behavior. The adsorption
quantity in column performance from breakthrough curves was to 20.0 mg·g1
for catechol and 15.8 mg·g1
for amoxicillin. Regeneration with 75% ethanol of spent Zr-IDA-LG was remarkable. The biocomposite is promising for removing some pollutants from water
References
2. R. R. Karri, N. S. Jayakumar and J. N. Sahu, J. Mol. Liq., 231, 249 (2017).
3. C. Zhang, X. Wang, Z. Ma, Z. Luan, Y. Wang, Z. Wang and L.Wang, Environ. Chem. Lett., 18, 377 (2020).
4. Y. H. Fu, Y. F. Shen, Z. D. Zhang, X. L. Ge and M. D. Chen, Sci.Total Environ., 646, 1567 (2019).
5. D. Y. Ma, S. Y. Zhang, S. H. Zhan, L. T. Feng, S. G. Zeng, Q. Q. Lin and Y. Pan, Ind. Eng. Chem. Res., 58, 20090 (2019).
6. N. Schweigert, A. J. B. Zehnder and R. I. L. Eggen, Environ. Microbiol., 3, 81 (2001).
7. B.F. Negara, J.H. Sohn, J.S. Kim and J.S. Choi, Foods, 10, 452 (2021).
8. B. A. de Marco, J. S. H. Natori, S. Fanelli, E. G. Tótoli and H. R. N.Salgado, Crit. Rev. Anal. Chem., 47, 267 (2017).
9. L. W. Matzek and K. E. Carter, Chemosphere, 151, 178 (2016).
10. W. R. Chen, Y. J. Ding, C. T. Johnston, B. J. Teppen, S. A. Boyd and H. Li, Environ. Sci. Technol., 44, 4486 (2010).
11. K. Kummerer, Chemosphere, 75, 435 (2009).
12. A. A. Aryee, R. P. Han and L. B. Qu, J. Clean. Prod., 368, 133140 (2022).
13. A. Hrioua, A. Loudiki, A. Farahi, F. Laghrib, M. Bakasse, S. Lahrich,S. Saqrane and M.A. El Mhammedi, Bioelectrochemistry, 142, 107936 (2021).
14. F. M. Mpatani, R. P. Han, A. A. Aryee, A. N. Kani, L. B. Qu and Z. H. Li, Sci. Total Environ., 780, 146629 (2021).
15. F. Zhu, Y. M. Zheng, B. G. Zhang and Y. R. Dai, J. Hazard. Mater.,401, 123608 (2021).
16. J. L. Wang, X. Liu, M. M. Yang, H. Y. Han, S. S. Zhang, G. F. Ouyang and R. P. Han, J. Mol. Liq., 338, 116698 (2021).
17. X. Xu, B. Y. Gao, B. Jin and Q. Y. Yue, J. Mol. Liq., 215, 565 (2016).
18. S. Su, Q. Liu, J. Liu, H. Zhang, R. Li, X. Jing and J. Wang, J. Colloid Interface Sci., 530, 538 (2018).
19. D. K. Verma, S. H. Hasan, D. Ranjan and R. M. Banik, Int. J. Environ. Sci. Technol., 11, 1927 (2014).
20. I. Anastopoulos and I. Pashalidis, J. Mol. Liq., 319, 114127 (2020).
21. R. Ahmad and S. Haseeb, Desal. Water Treat., 57, 17826 (2016).
22. Q. Kong, Y. N. Wang, L. Shu and M. S. Miao, Desalin. Water Treat.,57, 7933 (2016).
23. R. Tyagi and J. Jacob, React. Funct. Polym., 154, 104687 (2020).
24. A. A. Aryee, F. M. Mpatani, Y. Y. Du, A. N. Kani, E. Dovi, R. P. Han,Z. H. Li and L. B. Qu, Environ. Pollut., 268, 115729 (2021).
25. P. A. Kavaklı, C. Kavaklı and O. Güven, Rad. Phys. Chem., 94, 105 (2014).
26. M. Y. Liu, X. T. Zhang, Z. H. Li, L. B. Qu and R. P. Han, Carbohyd.Polym., 248, 116792 (2020).
27. K. K. Zhu, Y. F. Gu, R. Wang and R. P. Han, Desal. Water Treat.,236, 274 (2021).
28. B. R. Poudel, R. L. Aryal, S. K. Gautam, K. N. Ghimire, H. Paudyal and M. R. Pokhrel, J. Environ. Chem. Eng., 9, 106552 (2021).
29. J. L. Wang, X. Liu, H. Y. Han and R. P. Han, Desal. Water Treat.,253, 256 (2022).
30. D. Z. Marković-Nikolić, A. L. Bojić, S. R. Savić, S. M. Petrović, D. J.Cvetković, M.D. Cakić and G.S. Nikolić, J. Spectrosc., 2018, 1856109 (2018).
31. G. Yuvaraja, Y. X. Pang, D. Y. Chen, L. J. Kong, S. Mehmood, M. V.Subbaiah, D. S. Rao, C. M. Pavuluri, J. C. Wen and G. M. Reddy,Int. J. Biol. Macromol., 136, 177 (2019).
32. M. A. Aslam, W. Ding, S. U. Rehman, A. Hassan, Y. C. Bian, Q. C.Liu and Z. G. Sheng, Appl. Surf. Sci., 543, 148785 (2021).
33. A. Naskar and R. Majumder, J. Mol. Liq., 242, 892 (2017).
34. X. C. Jin, Z. Y. Xiang, Q. G. Liu, Y. Chen and F. C. Lu, Bioresour.Technol., 244, 844 (2017).
35. A. Ogawa and H. Fujimoto, Inorg. Chem., 41, 4888 (2002).
36. K. Shakir, H. F. Ghoneimy, A. F. Elkafrawy, S. G. Beheir and M.Refaat, J. Hazard. Mater., 150, 765 (2008).
37. S. Miyata, Clay. Clay Miner., 31, 305 (1983).
38. K. V. Kumar, S. Gadipelli, B. Wood, K. A. Ramisetty, A. A. Stewart,C. A. Howard, D. J. L. Brett and F. Rodriguez-Reinoso, J. Mater.Chem. A, 7, 10104 (2019).
39. H. Niknejad, A. Esrafili, M. Kermani, V. Oskoei and M. Farzadkia,J. Environ. Health Sci. Eng., 18, 1521 (2020).
40. M. Khajavian, S. Shahsavarifar, E. Salehi, V. Vatanpour, M. Masteri-Farahani, F. Ghaffari and S. A. Tabatabaei, Chem. Eng. Res.Des., 175, 131 (2021).
41. E. Vunain, D. Houndedjihou, M. Monjerezi, A. A. Muleja and B.Kodom, Water Air Soil Pollut., 229, 366 (2018).
42. J. Imanipoor, M. Mohammadi, M. Dinari and M. R. Ehsani, J.Chem. Eng. Data, 66, 389 (2021).
43. C. H. Ma, X. T. Zhang, K. Wen, R. Wang and R. P. Han, Korean J.Chem. Eng., 38(1), 135 (2021).
44. X. T. Zhang, S. S. Zhang, G. F. Ouyang and R. P. Han, Korean J.Chem. Eng., 39(7), 1839 (2022).
45. Y. N. Shang, X. Xu, Q. Y. Yue, B. Y. Gao and Y. W. Li, Environ. Sci.Nano, 7, 1444 (2020).
46. A. A. Aryee, E. Dovi, R. P. Han, Z. H. Li and L. B. Qu, J. Colloid Interface Sci., 598, 69 (2021).
47. Z. Akzu and F. Gonen, Process Biochem., 39, 599 (2004).
48. E. Dovi, A. A. Aryee, A. N. Kani, F. M. Mpatani, J. J. Li, L. B. Qu and R. P. Han, J. Environ. Chem. Eng., 10(2), 107292 (2022).
49. A. Baharlouei, E. Jalilnejad and M. Sirousazar, Chem. Eng. Commun., 205, 1537 (2018).
50. B. Debnath, M. Majumdar, M. Bhowmik, K. L. Bhowmik, A. Debnath and D. N. Roy, J. Environ. Manage., 261, 110235 (2020)