ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received December 18, 2022
Revised March 14, 2023
Accepted March 31, 2023
Acknowledgements
The authors would like to thank the University of the Punjab, Lahore, Pakistan for financial and technical assistance for this study. Additional support provided by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) by way of granting financial aid from the Ministry of Trade, Industry & Energy (MOTIE), Republic of Korea (No. 2021010000001B) is also appreciated.
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Effect of pyrolysis temperature on the physiochemical properties of biochars produced from raw and fermented rice husks

1Zhengzhou University, Henan, China 2Institute of Energy and Environmental Engineering, University of the Punjab, Pakistan 3Department of Chemical Engineering, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 4Institute of Chemical Engineering and Technology, University of the Punjab, Pakistan 5Department of Environmental Sciences, University of Narowal 6SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea 7School of Mechanical Engineering, Sungkyunkwan University, 2066 Seobu-ro Jangan-gu, Suwon, Gyeonggi-do 16419, Korea 8School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea
hassanzeb.ieee@pu.edu.pk, jaehoonkim@skku.edu
Korean Journal of Chemical Engineering, August 2023, 40(8), 1986-1992(7), 10.1007/s11814-023-1465-4
downloadDownload PDF

Abstract

This study investigated the slow pyrolysis behavior of raw rice husk (RRH) and fermented rice husk (FRH) in a fixed-bed reactor at temperatures in the range of 200-600 o C. The effects of pyrolysis temperature on the biochar yield, composition, and physiochemical properties were examined to evaluate the energy potential of biochars produced from RRH and FRH. The FRH-derived biochar produced at 600 o C was found to be more suitable than the RRH-derived biochar because of its higher carbon content (68.9% vs 42.1%), GCV (31.6 vs 24.1 MJ kg1 ), and true density (1.94 vs 1.54 g cm3 ). The slow pyrolysis in the high-temperature regime facilitated the formation of lignin-rich and aromatically condensed biochar, making it particularly useful for producing carbon-rich materials. Thus, slow pyrolysis can be a technically viable approach for producing high-energy-density solid fuels that can replace mediumranking coals in co-firin

References

1. Z. Anwar, M. Gulfraz and M. Irshad, J. Radiat. Res. Appl. Sci., 7,163 (2014).
2. C. H. Ko, S. H. Park, J.-K. Jeon, D. J. Suh, K.-E. Jeong and Y.-K.Park, Korean J. Chem. Eng., 29, 1657 (2012).
3. Y. H. Oh, I. Y. Eom, J. C. Joo, J. H. Yu, B. K. Song, S. H. Lee, S. H.Hong and S. J. Park, Korean J. Chem. Eng., 32, 1945 (2015).
4. L. J. Jönsson and C. Martín, Bioresour. Technol., 199, 103 (2016).
5. F. R. Vieira, C. M. Romero Luna, G. L. A. F. Arce and I. Ávila, Biomass Bioenergy, 132, 105412 (2020).
6. E. Menya, P. W. Olupot, H. Storz, M. Lubwama, Y. Kiros and M. J.John, Biomass Convers. Biorefin., 10, 57 (2020).
7. S. Khan, A. Nisar, B. Wu, Q.-L. Zhu, Y.-W. Wang, G.-Q. Hu and M.-x. He, Sci. Total Environ., 814, 152872 (2022).
8. H. Sana, S. Kanwal, J. Akhtar, R. Haider, S. Nawaz, N. Sheikh and S. Munir, Energy Sources Part A-Recovery Util. Environ. Eff., 39,465 (2017).
9. A. Abbas and S. Ansumali, Bioenergy Res., 3, 328 (2010).
10. L. Dunnigan, P. J. Ashman, X. Zhang and C. W. Kwong, J. Clean.Prod., 172, 1639 (2018).
11. V. S. Sikarwar, M. Zhao, P. S. Fennell, N. Shah and E. J. Anthony,Prog. Energy Combust. Sci., 61, 189 (2017).
12. C. E. Brewer, K. Schmidt‐Rohr, J. A. Satrio and R. C. Brown, Environ. Prog. Sustain. Energy: An Official Publication Am. Inst. Chem.Eng., 28, 386 (2009).
13. A. Tomczyk, Z. Sokołowska and P. Boguta, Rev. Environ. Sci. Biotechnol., 19, 191 (2020).
14. Z. Z. Chowdhury, M. Z. Karim, M. A. Ashraf and K. Khalid, BioResources, 11, 3356 (2016).
15. L. Wang, Y. S. Ok, D. C. Tsang, D. S. Alessi, J. Rinklebe, H. Wang,O. Mašek, R. Hou, D. O'Connor and D. Hou, Soil Use Manage.,36, 358 (2020).
16. G. Newalkar, K. Iisa, A. D. D’Amico, C. Sievers and P. Agrawal,Energy Fuels, 28, 5144 (2014).
17. Z. Chowdhury Zaira, P. Kaushik, A. Y. Wageeh, S. Suresh, S. Syed Tawab, A. Ganiyu Abimbola, M. Emy, R. Rahman Faijur and J.
Rafie Bin, Pyrolysis: A sustainable way to generate energy from waste,IntechOpen Publisher, Rijeka (2017).
18. H.-B. Kim, J.-G. Kim, T. Kim, D. S. Alessi and K. Baek, Chem. Eng.J., 393, 124687 (2020).
19. A. Demirbaş, Energy Convers. Manage., 42, 1357 (2001).
20. G. Wu, P. Qu, E. Sun, Z. Chang, Y. Xu and H. Huang, Bioresources,10, 227 (2015).
21. W. Su, H. Ma, Q. Wang, J. Li and J. Ma, J. Anal. Appl. Pyrolysis, 99,79 (2013).
22. J. Poudel and S. C. Oh, Energies, 7, 5586 (2014).
23. A. Demirbas, Energy Sources Part A-Recovery Util. Environ. Eff.,29, 329 (2007).
24. A. Dawei, W. Zhimin, Z. Shuting and Y. Hongxing, Int. J. Energy Res., 30, 349 (2006).
25. H. Soedjatmiko, R. Chrisnasari and P. H. Hardjo, IOP Conf. Ser.:Earth Environ. Sci., 293, 012020 (2019).
26. M. Brebu and C. Vasile, Cellul. Chem. Technol., 44, 353 (2010).
27. S. Kern, M. Halwachs, G. Kampichler, C. Pfeifer, T. Pröll and H.Hofbauer, J. Anal. Appl. Pyrolysis, 97, 1 (2012).
28. X. Cao and W. Harris, Bioresour. Technol., 101, 5222 (2010).
29. N. Muradov, B. Fidalgo, A. C. Gujar, N. Garceau and A. T-Raissi,Biomass Bioenergy, 42, 123 (2012).
30. A. Demirbas, J. Anal. Appl. Pyrolysis, 72, 243 (2004).
31. X. He, Z. Liu, W. Niu, L. Yang, T. Zhou, D. Qin, Z. Niu and Q.Yuan, Energy, 143, 746 (2018).
32. M. Phanphanich and S. Mani, Bioresour. Technol., 102, 1246 (2011).
33. M. I. Al-Wabel, A. Al-Omran, A. H. El-Naggar, M. Nadeem and
A. R. A. Usman, Bioresour. Technol., 131, 374 (2013).
34. X. He, Z. Liu, W. Niu, L. Yang, T. Zhou, D. Qin, Z. Niu and Q. Yuan,Energy, 143, 746 (2018).
35. W.-T. Tsai, S.-C. Liu and C.-H. Hsieh, J. Anal. Appl. Pyrolysis, 93,63 (2012).
36. A. Demirbas, Energy Explor. Exploit., 20, 105 (2002).
37. S. Liang, Y. Han, L. Wei and A. G. McDonald, Biomass Convers.Biorefin., 5, 237 (2015).
38. A. Gani and I. Naruse, Renew. Energy, 32, 649 (2007).
39. R. H. White, Wood Fiber Sci., 19, 446 (2007).
40. T. Bridgeman, J. Jones, I. Shield and P. Williams, Fuel, 87, 844 (2008).
41. P. Kaparaju, M. Serrano, A. B. Thomsen, P. Kongjan and I. Angelidaki, Bioresour. Technol., 100, 2562 (2009).
42. P. Sannigrahi and A. J. Ragauskas, J. Biobased Mater. Bioenergy, 5,514 (2011).
43. H. Kawamoto, J. Wood Sci., 63, 117 (2017).
44. S. Suman and S. Gautam, Energy Sources Part A-Recovery Util. Environ. Eff., 39, 933 (2017).
45. Z.-H. Lu, L.-T. Li, W.-H. Min, F. Wang and E. Tatsumi, Int. J. Food Sci. Tech., 40, 985 (2005).
46. X. Zhang, P. Zhang, X. Yuan, Y. Li and L. Han, Bioresour. Technol.,296, 122318 (2020)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로