Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 22, 2023
Revised April 16, 2023
Accepted May 1, 2023
- Acknowledgements
- This research was partially supported by the Basic Science Research Capacity Enhancement Project through a Korea Basic Science Institute (National Research Facilities and Equipment Center) grant funded by the Ministry of Education (Grant No. 2019R1A6C1010024). We acknowledge the HRTEM Facility at SRMIST set up with support from the MNRE (Project No. 31/03/ 2014-15/PVSE-R&D), the Government of India, the SRM Institute of Science and Technology for providing the Micro-Raman Facility, and SRMIST for the high-r
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Thortveitite phase manganese vanadate (Mn2V2O7) for the removal of model organic pollutants
Abstract
Photocatalysis is useful for the long-term goal of a pollution-free environment. However, the development
of new photoactive materials with enhanced photoconversion efficiency remains a serious bottleneck. This study
demonstrates the preparation of low-cost, nontoxic, rod-like -Mn2V2O7 using a simple, cost-effective fabrication
method. The proposed photoactive material was characterized using several analytical techniques to determine its
physiochemical properties, while its photocatalytic ability for the removal of organic pollutants under direct sunlight
was also assessed. The prepared -Mn2V2O7 was found to efficiently remove both Rhodamine B and methylene blue
from an aqueous solution. The photoinduced and ultra-sound-assisted catalytic reduction of 4-nitrophenol (4-NP) was
also demonstrated. The hydrogen-evolved photocatalytic removal of 4-NP was evaluated with different amounts of ethanol as a scavenger, with 10% ethanol exhibiting optimal efficiency. The superior organic pollutant removal ability of
the proposed material is ascribed to its high surface area, superior optical properties, and suitable band edges.
References
2. Y. Yang, G. Zeng, D. Huang, C. Zhang, D. He, C. Zhou, W. Wang,W. Xiong, B. Song and H. Yi, Small, 16, 2001634 (2020).
3. K. Chaudhary, N. Shaheen, S. Zulfiqar, M. I. Sarwar, M. Suleman,
P. O. Agboola, I. Shakir and M. F. Warsi, Synth. Met., 269, 116526 (2020).
4. V. Jayaraman, M. Chinnan, P. Alagarsamy and A. Mani, Mater. Sci.Semicond. Process., 124, 105611 (2021).
5. C.-C. Wang, J.-R. Li, X.-L. Lv, Y.-Q. Zhang and G. Guo, Energy Environ. Sci., 7, 2831 (2014).
6. R. Gusain, K. Gupta, P. Joshi and O. P. Khatri, Adv. Colloid Interface Sci., 272, 102009 (2019).
7. M. Ghanbari and M. Salavati-Niasari, Inorg. Chem., 57, 11443 (2018).
8. Y. Wang, C. Zhu, G. Zuo, Y. Guo, W. Xiao, Y. Dai, J. Kong, X. Xu,Y. Zhou and A. Xie, Appl. Catal. B: Environ., 278, 119298 (2020).
9. R. Rajendran, K. Varadharajan, V. Jayaraman, B. Singaram and J.Jeyaram, Appl. Nanosci., 8, 61 (2018).
10. X. Liu, H. Euchner, M. Zarrabeitia, X. Gao, G. A. Elia, A. Groß and S. Passerini, ACS Energy Lett., 5, 2979 (2020).
11. M. Huang, J. Bian, W. Xiong, C. Huang and R. Zhang, J. Mater.Chem., 6, 3602 (2018).
12. X. Zhao, Z. Duan and L. Chen, Ind. Eng. Chem., 58, 10402 (2019).
13. V. Jayaraman, D. Sarkar, R. Rajendran, B. Palanivel, C. Ayappan, M.Chellamuthu and A. Mani, J. Environ. Manage., 247, 104 (2019).
14. L. Chen, Z. Yang, J. Wu, H. Chen and J. Meng, Electrochim. Acta,330, 135347 (2020).
15. V. Shrivastava and R. Nagarajan, Mater. Lett., 280, 128559 (2020).
16. B. Sambandam, V. Soundharrajan, J. Song, S. Kim, J. Jo, P. T. Duong,S. Kim, V. Mathew and J. Kim, J. Power Sources, 350, 80 (2017).
17. D. Xia, S. Xu, W. Wang, D. Wang, M. Wu and F. Gong, ChemComm., 56, 8043 (2020).
18. Y. Yang, I. C. Infante, B. Dkhil and L. Bellaiche, C. R. Phys., 16, 193 (2015)
19. C.-C. Zhou, F.-M. Liu, D. Peng, L.-g. Cai and W.-w. Zhong, J. AlloysCompd., 505, 573 (2010).
20. S. Ninova, M. Strach, R. Buonsanti and U. Aschauer, J. Chem. Phys.,153, 084704 (2020).
21. J. Sannigrahi, S. Giri and S. Majumdar, Solid State Commun., 228,10 (2016).
22. Y. Sun, Z. Ouyang, Y. Xiao, Y. Su, E. Feng, Z. Fu, W. Jin, M. Zbiri,Z. Xia and J. Wang, Mater. Res. Express., 4, 046101 (2017).
23. S. Jain, B. Sharma, N. Thakur, S. Mishra and T. K. Sarma, ACS Appl.Nano Mater., 3, 7917 (2020).
24. Y. Liu and Y. Qian, Front. Chem. China, 3, 467 (2008).
25. F. T. Bekena, H. Abdullah, D.-H. Kuo and M. A. Zeleke, J. Ind. Eng.Chem., 78, 116 (2019).
26. H. Abdullah, N. S. Gultom and D.-H. Kuo, J. Hazard. Mater., 363,109 (2019).
27. C. Yang, W. Dong, G. Cui, Y. Zhao, X. Shi, X. Xia, B. Tang and W.Wang, RSC Adv., 7, 23699 (2017).
28. D. Guerrero-Araque, P. Acevedo-Peña, D. Ramírez-Ortega and R.Gómez, New J. Chem., 41, 12655 (2017).
29. Z. D. Pozun, S. E. Rodenbusch, E. Keller, K. Tran, W. Tang, K. J.Stevenson and G. Henkelman, J. Phys. Chem. C., 117, 7598 (2013).
30. S. Wunder, Y. Lu, M. Albrecht and M. Ballauff, ACS Catal., 1, 908 (2011).
31. D. Newns, Phys. Rev., 178, 1123 (1969).
32. B. V. Krishna, S. K. Hussain and J. S. Yu, J. Power Sources, 506,230193 (2021).
33. C. Zheng, B. Jian, J. Zhong and S. Huang, J. Alloys Compd., 934,168018 (2023).
34. E. Kamar, K. Qasim and M. Mousa, Electrochim. Acta, 430 141106 (2022).
35. M. Kumar, D. I. Jeong, N. Sarwar, S. Dutta, N. Chauhan, S. A. Han,
J. H. Kim and D. H. Yoon, Appl. Surf. Sci., 572, 151450 (2022).
36. L. Cui, Z. Bai, Z. Li, Z. Liu, H. Ma, X. Chen, K. Lin, J. Hao, Y. Cui and F. Tian, Appl. Surf. Sci., 602, 154403 (2022).
37. Z. Zhao, X. Wang, S. Wang, Z. Xiao, S. Zhai, J. Ma, X. Dong, H.Sun and Q. An, Langmuir, 38, 11054 (2022).
38. E. M. Sitinjak, I. Masmur, N. V. M. D. Marbun, P. E. Hutajulu, G.Gultom and Y. J. R. a. Sitanggang, RSC Adv., 12, 16165 (2022).
39. G. Zhang, Y. Wang, F. He, L. He, H. Li and D. Xu, Catal. Commun., 166, 106454 (2022)