Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received January 18, 2023
Revised March 1, 2023
Accepted March 10, 2023
- Acknowledgements
- This work was supported by the Technology Innovation Program (20011633) funded By the Ministry of Trade, Industry & Energy (MOTIE, Korea)
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Acceleration of electrolyte membrane degradation by frequent activation in PEMFC electrochemical durability evaluation
Abstract
During the durability tests for PEMFC membranes, performance characterization is conducted to determine the degree of degradation, the interval for which is different for each durability test protocol. Before performance
characterization, activation is carried out to determine the reliability. Most activations are accompanied by voltage
changes, which can lead to electrode degradation. However, this has largely been neglected because the activation time
is shorter than the durability test time. In this study, activation was conducted at 24, 48, and 144 h intervals, during the
membrane durability test of a PEMFC, and the effect of activation on the degradation of the membrane and electrode
was investigated. For a shorter activation interval during the durability test, the lifetime of the membrane was reduced
by up to 35%. For the same durability test time, more activations led to greater electrode and membrane degradation.
Through scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM-EDS) analysis, it was found that
for a shorter activation interval, more Pt was deposited into the membrane and then the membrane was thinner.
During the durability test, frequent activation accelerated membrane and electrode degradation.
References
2. M. Boni, S. S. Rao and G. N. Srinivasulu, Korean J. Chem. Eng., 39,116 (2022).
3. H. Hesami, M. Borji and J. Rezapour, Korean J. Chem. Eng., 38,2423 (2021).
4. R. K. Pachauri and Y. K. Chauhan, Renew. Sust. Energ. Rev., 43,1301 (2015).
5. R. Bahoosh, M. Jafari and S. S. Bahrainian, Korean J. Chem. Eng.,38, 1703 (2021).
6. S. Wu, W. Yang, J. Zhan, H. Yan, X. Kong and X. Zuo, Korean J.Chem. Eng., 39, 2055 (2022).
7. S. Cherevko, N. Kulyk and K. J. J. Mayrhofer, Nano Energy, 29, 275 (2016).
8. P. Ren, P. Pei, Y. Li, Z. Wu, D. Chen and S. Huang, Prog. Energy Combust. Sci., 80, 100859 (2020).
9. C. A. Reiser, L. Bregoli, T. W. Patterson, J. S. Yi, J. Deliang Yang, M. L.Perry and T. D. Jarvi, Electrochem. Solid-State Lett., 8(6), 273 (2005).
10. M. P. Rodgers, L. J. Bonville, H. Russell Kunz, D. K. Slattery and J. M. Fenton, Chem. Rev., 112(11), 6075 (2012).
11. U. S. DOE, Fuel Cell Technologies Office, Multi-Year Research,Development, and Demonstration Plan, Section 3.4 Fuel Cells, 1 (2016).
12. Daido Univ., Ritsumeikian Univ., Tokyo Institute of Technology,Japan Automobile Research Ins., Cell Evaluation and Analysis Protocol Guideline, NEDO, Development of PEFC Technologies for Commercial Promotion-PEFC Evaluation Project, January 30 (2014).
13. G. Tsotridis, A. Pilenga, G. De Marco and T. Malkow, JRC Sci. Policy Rep. (2015).
14. M. Zhiani, S. Majidi and M. M. Taghiabadi, Fuel Cells, 13(5), 946 (2013).
15. S. Zhang, X. Z. Yuan, J. N. C. Hin, H. Wang, J. Wu, K. A. Friedrich and M. Schulze, J. Power Sources, 195(4), 1142 (2010).
16. N. Hasegawa, T. Asano, T. Hatanaka, M. Kawasumi and Y.Morimoto, ECS Transactions, 16(2), 1713 (2008).
17. T. Kim, H. Lee, W. Sim, S. Kim, T. Lim and K. Park, Korean J. Chem.Eng., 26(5), 1265 (2009).
18. M Inaba, T Kinumoto, M Kiriake, R Umebayashi, A. Tasaka and Z. Ogumi, Electrochim. Acta, 51(26), 5746 (2006).
19. P. Gazdzick, J. Mitzel, D. G. Sanchez, M. Schulze and K. A. Friedrich, J. Power Sources, 327, 86 (2016).
20. S. Kundu, M. Fowler, L. C. Simon and R. Abouatallah, J. Power Sources, 182(1), 254 (2008).
21. T. Sakai, H. Takenaka, N. Wakabayashi, Y. Kawami and E. Torikai,J. Electrochem. Soc., 132(6), 1328 (1985).
22. R. Petrone, D. Hissel, M. C. Péra, D. Chamagne and R. Gouriveau,
Int. J. Hydrogen Energy, 40(36), 12489 (2015).23. J. Song, S. Kim, B. Ahn, J. Ko and K. Park, Korean Chem. Eng. Res.,51(1), 68 (2013).
24. A. Kumar, Y. Yun, J. Hong, I. Kim, A. Bjardwaj and S. Song, Korean J. Chem. Eng., 38(10), 2057 (2021).
25. M. Gummalla, V. V. Atrazhev, D. Condit, N. Cipollini, T. Madden,N. Y. Kuzminyh, D. Woiss and S. F. Burlatsky, J. Electrochem. Soc.,157(11), 1542 (2010).