Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 29, 2022
Revised March 30, 2023
Accepted May 8, 2023
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Activated carbon from municipal waste for enhanced CO2/CH4 membrane separation: Experimental, modeling and simulation
Abstract
Three conventional and abundant municipal wastes (PET bottles, bread, and human hair) were used for
the synthesis of the solid carbon product. The activation of this carbon powder was performed with the aid of KOH
and ZnCl2 chemicals to achieve activated carbons (ACs). The characterization methods, such as SEM, FTIR, N2
adsorption-desorption analysis, BET, and DFT pore size analysis, were applied to characterize the synthesized mixed
matrix membranes (MMMs). The ACs synthesized by PET wastes and human hairs showed the highest and lowest
sorption capacity, BET surface area, and pore volume, respectively. The activation of ACs using KOH showed overall
better effectiveness in CO2/CH4 separation performance of fabricated MMMs compared with using ZnCL2, due to the
presence of hydroxyl groups at the surface of KOH-modified ACs. The developed model for the spiral wound membrane module showed good agreement with experimental data and modeling results of the hollow fiber module in the
literature. The result of the model on the best-performed membrane showed that the increase in module length and
diameter led to a logarithmic increase in the stage cut. It appears that the increase in module diameter is more practical and beneficial than that in module length. The result of the simulation of a double step with recycling of permeate
(DoSRP) separation system in the Aspen Plus environment shows that the increase in CH4 content of the feed, temperature, and decrease in thickness of membranes all have deteriorative effect on the separation performance of overall
DoSRP configuration separation system. It was also deduced that MMMs with higher CO2 permeance and CO2/CH4
ideal selectivity suffer more from the mentioned changes in simulated manipulated separation parameters compared
with less effective MMMs.
References
2. S. Esmaeilizadeh, A. Shaghaghi and H. Taghipour, J. Mater. Cycles Waste Manag., 22, 1284 (2020).
3. A. Nabavi-Pelesaraei, R. Bayat, H. Hosseinzadeh-Bandbafha, H.Afrasyabi and K. Chau, J. Clean. Prod., 148, 427 (2017).
4. M. Rasapoor, M. Adl and B. Pourazizi, J. Environ. Manag., 184,528 (2016).
5. S. M. S. Ardebili, Renew. Energy, 154, 29 (2020).
6. A. Taghizadeh-Alisaraei, S. H. Hosseini, B. Ghobadian and A.Motevali, Renew. Sustain. Energy Rev., 69, 1100 (2017).
7. W. Gao, M. R. Farahani, M. K. Jamil, M. K. Siddiqui, H. M. A. Siddiqui, M. Imran and R. Rezaee-Manesh, Pet. Sci. Technol., 35, 183 (2017).
8. S. Elkhalifa, T. Al-Ansari, H. R. Mackey and G. McKay, Resour.Conserv. Recycl., 144, 310 (2019).
9. A. Jain, R. Balasubramanian and M. P. Srinivasan, Chem. Eng. J.,283, 789 (2016).
10. J. M. Dias, M. C. M. Alvim-Ferraz, M. F. Almeida, J. Rivera-Utrilla and M. Sánchez-Polo, J. Environ. Manag., 85, 833 (2007).
11. X. Zhang, B. Gao, A. E. Creamer, C. Cao and Y. Li, J. Hazard.Mater., 338, 102 (2017).
12. S. A. A. Mansoori, Z. Reza, H. Mohammad, M. S. Mohammad, J.Abolfazl, S. Sadegh and E. Akbar, Nat. Gas Ind. B., 9, 318 (2022).
13. W. Fam, J. Mansouri, H. Li and V. Chen, J. Membr. Sci., 537, 54 (2017).
14. J. Kim, Q. Fu, K. Xie, J. M. P. Scofield, S. E. Kentish and G. G. Qiao,J. Membr. Sci., 515, 54 (2016).
15. J. Y. Lai and L. H. Ngu, IOP Conf. Ser. Mater. Sci. Eng., 1195 (2021).
16. D. A. Gkika, N. Vordos, J. W. Nolan, A. C. Mitropoulos, E. F. Vansant, P. Cool and J. Braet, J. Nanoparticle Res., 19, 177 (2017).
17. L. Deng, T.-J. Kim and M.-B. Hägg, J. Membr. Sci., 340, 154 (2009).
18. M. Barooah and B. Mandal, J. Membr. Sci., 572, 198 (2019).
19. J. Ø. Torstensen, R. M. L. Helberg, L. Deng, Ø. W. Gregersen and K. Syverud, Int. J. Greenh. Gas Control, 81, 93 (2019).
20. Z. Jahan, M. B. K. Niazi, M.-B. Hägg and Ø. W. Gregersen, J. Membr.Sci., 554, 275 (2018).
21. G. Guerrero, M.-B. Hägg, G. Kignelman, C. Simon, T. Peters, N.Rival and C. Denonville, J. Membr. Sci., 544, 161 (2017).
22. Z. Huang, L. Shen, H. Lin, B. Li, C. Chen, Y. Xu, R. Li, M. Zhang and D. Zhao, J. Membr. Sci., 661, 120949 (2022).
23. Y. Liu, L. Shen, H. Lin, W. Yu, Y. Xu, R. Li, T. Sun and Y. He, J. Membr. Sci., 612, 118378 (2020).
24. M. Wu, Y. Chen, H. Lin, L. Zhao, L. Shen, R. Li, Y. Xu, H. Hong and Y. He, Water Res., 181, 115932 (2020).
25. Z. Huang, J. Liu, Y. Liu, Y. Xu, R. Li, H. Hong, L. Shen, H. Lin and B. Q. Liao, J. Membr. Sci., 623, 119080 (2021).
26. L. Gurreri, A. Tamburini, A. Cipollina, G. Micale and M. Ciofalo,Desalin. Water Treat., 69, 178 (2017).
27. R. Khalilpour, A. Abbas, Z. Lai and I. Pinnau, Chem. Eng. Res. Des.,91, 332 (2013).
28. F. Ahmad, K. K. Lau, A. M. Shariff and G. Murshid, Comput. Chem.Eng., 36, 119 (2012).
29. R. Hoseinzadeh Hesas, W. M. A. Wan Daud, J. N. Sahu and A.Arami-Niya, J. Anal. Appl. Pyrolysis, 100, 1 (2013).
30. M. E. Dmitrenko, A. V. Penkova, A. I. Kuzminova, M. Morshed,M. I. Larionov, H. Alem, A. A. Zolotarev, S. S. Ermakov and D.Roizard, Appl. Surf. Sci., 450, 527 (2018).
31. D. A. Reino Olegário da Silva, L. C. Bosmuler Zuge and A. de Paula Scheer, Sep. Purif. Technol., 247, 116852 (2020).
32. J. Cao, Y. Gao and Y. Ma, Biomass Convers. Biorefinery, 9, 521 (2019).
33. D. Bal Altuntaş, V. Nevruzoğlu, M. Dokumacı and Ş. Cam, Carbon Lett., 30, 307 (2020).
34. C. Y. Pan, AIChE J., 32, 2020 (1986).
35. F. Ahmad, K. K. Lau, S. S. M. Lock, S. Rafiq, A. U. Khan and M.Lee, J. Ind. Eng. Chem., 21, 1246 (2015).
36. R. Qi and M. A. Henson, Comput. Chem. Eng., 24, 2719 (2000).
37. M. R. Dilshad, A. Islam, U. Hamidullah, F. Jamshaid, A. Ahmad,M. T. Z. Butt and A. Ijaz, Sep. Purif. Technol., 210, 627 (2019).