ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received October 29, 2022
Revised March 30, 2023
Accepted May 8, 2023
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Activated carbon from municipal waste for enhanced CO2/CH4 membrane separation: Experimental, modeling and simulation

1Esfarayen University of Technology, Esfarayen, North Khorasan, Iran 2Department of Mechanical, Aerospace and Civil Engineering (MACE), The University of Manchester, Manchester, M13 9PL, UK
abolfazl.jomekian@gmail.com, a_jomekian@esfarayen.ac.ir
Korean Journal of Chemical Engineering, September 2023, 40(9), 2102-2118(17), 10.1007/s11814-023-1493-0
downloadDownload PDF

Abstract

Three conventional and abundant municipal wastes (PET bottles, bread, and human hair) were used for the synthesis of the solid carbon product. The activation of this carbon powder was performed with the aid of KOH and ZnCl2 chemicals to achieve activated carbons (ACs). The characterization methods, such as SEM, FTIR, N2 adsorption-desorption analysis, BET, and DFT pore size analysis, were applied to characterize the synthesized mixed matrix membranes (MMMs). The ACs synthesized by PET wastes and human hairs showed the highest and lowest sorption capacity, BET surface area, and pore volume, respectively. The activation of ACs using KOH showed overall better effectiveness in CO2/CH4 separation performance of fabricated MMMs compared with using ZnCL2, due to the presence of hydroxyl groups at the surface of KOH-modified ACs. The developed model for the spiral wound membrane module showed good agreement with experimental data and modeling results of the hollow fiber module in the literature. The result of the model on the best-performed membrane showed that the increase in module length and diameter led to a logarithmic increase in the stage cut. It appears that the increase in module diameter is more practical and beneficial than that in module length. The result of the simulation of a double step with recycling of permeate (DoSRP) separation system in the Aspen Plus environment shows that the increase in CH4 content of the feed, temperature, and decrease in thickness of membranes all have deteriorative effect on the separation performance of overall DoSRP configuration separation system. It was also deduced that MMMs with higher CO2 permeance and CO2/CH4 ideal selectivity suffer more from the mentioned changes in simulated manipulated separation parameters compared with less effective MMMs.

References

1. H. S. Fami, L. H. Aramyan, S. J. Sijtsema and A. Alambaigi, Resour.Conserv. Recycl., 143, 154 (2019).
2. S. Esmaeilizadeh, A. Shaghaghi and H. Taghipour, J. Mater. Cycles Waste Manag., 22, 1284 (2020).
3. A. Nabavi-Pelesaraei, R. Bayat, H. Hosseinzadeh-Bandbafha, H.Afrasyabi and K. Chau, J. Clean. Prod., 148, 427 (2017).
4. M. Rasapoor, M. Adl and B. Pourazizi, J. Environ. Manag., 184,528 (2016).
5. S. M. S. Ardebili, Renew. Energy, 154, 29 (2020).
6. A. Taghizadeh-Alisaraei, S. H. Hosseini, B. Ghobadian and A.Motevali, Renew. Sustain. Energy Rev., 69, 1100 (2017).
7. W. Gao, M. R. Farahani, M. K. Jamil, M. K. Siddiqui, H. M. A. Siddiqui, M. Imran and R. Rezaee-Manesh, Pet. Sci. Technol., 35, 183 (2017).
8. S. Elkhalifa, T. Al-Ansari, H. R. Mackey and G. McKay, Resour.Conserv. Recycl., 144, 310 (2019).
9. A. Jain, R. Balasubramanian and M. P. Srinivasan, Chem. Eng. J.,283, 789 (2016).
10. J. M. Dias, M. C. M. Alvim-Ferraz, M. F. Almeida, J. Rivera-Utrilla and M. Sánchez-Polo, J. Environ. Manag., 85, 833 (2007).
11. X. Zhang, B. Gao, A. E. Creamer, C. Cao and Y. Li, J. Hazard.Mater., 338, 102 (2017).
12. S. A. A. Mansoori, Z. Reza, H. Mohammad, M. S. Mohammad, J.Abolfazl, S. Sadegh and E. Akbar, Nat. Gas Ind. B., 9, 318 (2022).
13. W. Fam, J. Mansouri, H. Li and V. Chen, J. Membr. Sci., 537, 54 (2017).
14. J. Kim, Q. Fu, K. Xie, J. M. P. Scofield, S. E. Kentish and G. G. Qiao,J. Membr. Sci., 515, 54 (2016).
15. J. Y. Lai and L. H. Ngu, IOP Conf. Ser. Mater. Sci. Eng., 1195 (2021).
16. D. A. Gkika, N. Vordos, J. W. Nolan, A. C. Mitropoulos, E. F. Vansant, P. Cool and J. Braet, J. Nanoparticle Res., 19, 177 (2017).
17. L. Deng, T.-J. Kim and M.-B. Hägg, J. Membr. Sci., 340, 154 (2009).
18. M. Barooah and B. Mandal, J. Membr. Sci., 572, 198 (2019).
19. J. Ø. Torstensen, R. M. L. Helberg, L. Deng, Ø. W. Gregersen and K. Syverud, Int. J. Greenh. Gas Control, 81, 93 (2019).
20. Z. Jahan, M. B. K. Niazi, M.-B. Hägg and Ø. W. Gregersen, J. Membr.Sci., 554, 275 (2018).
21. G. Guerrero, M.-B. Hägg, G. Kignelman, C. Simon, T. Peters, N.Rival and C. Denonville, J. Membr. Sci., 544, 161 (2017).
22. Z. Huang, L. Shen, H. Lin, B. Li, C. Chen, Y. Xu, R. Li, M. Zhang and D. Zhao, J. Membr. Sci., 661, 120949 (2022).
23. Y. Liu, L. Shen, H. Lin, W. Yu, Y. Xu, R. Li, T. Sun and Y. He, J. Membr. Sci., 612, 118378 (2020).
24. M. Wu, Y. Chen, H. Lin, L. Zhao, L. Shen, R. Li, Y. Xu, H. Hong and Y. He, Water Res., 181, 115932 (2020).
25. Z. Huang, J. Liu, Y. Liu, Y. Xu, R. Li, H. Hong, L. Shen, H. Lin and B. Q. Liao, J. Membr. Sci., 623, 119080 (2021).
26. L. Gurreri, A. Tamburini, A. Cipollina, G. Micale and M. Ciofalo,Desalin. Water Treat., 69, 178 (2017).
27. R. Khalilpour, A. Abbas, Z. Lai and I. Pinnau, Chem. Eng. Res. Des.,91, 332 (2013).
28. F. Ahmad, K. K. Lau, A. M. Shariff and G. Murshid, Comput. Chem.Eng., 36, 119 (2012).
29. R. Hoseinzadeh Hesas, W. M. A. Wan Daud, J. N. Sahu and A.Arami-Niya, J. Anal. Appl. Pyrolysis, 100, 1 (2013).
30. M. E. Dmitrenko, A. V. Penkova, A. I. Kuzminova, M. Morshed,M. I. Larionov, H. Alem, A. A. Zolotarev, S. S. Ermakov and D.Roizard, Appl. Surf. Sci., 450, 527 (2018).
31. D. A. Reino Olegário da Silva, L. C. Bosmuler Zuge and A. de Paula Scheer, Sep. Purif. Technol., 247, 116852 (2020).
32. J. Cao, Y. Gao and Y. Ma, Biomass Convers. Biorefinery, 9, 521 (2019).
33. D. Bal Altuntaş, V. Nevruzoğlu, M. Dokumacı and Ş. Cam, Carbon Lett., 30, 307 (2020).
34. C. Y. Pan, AIChE J., 32, 2020 (1986).
35. F. Ahmad, K. K. Lau, S. S. M. Lock, S. Rafiq, A. U. Khan and M.Lee, J. Ind. Eng. Chem., 21, 1246 (2015).
36. R. Qi and M. A. Henson, Comput. Chem. Eng., 24, 2719 (2000).
37. M. R. Dilshad, A. Islam, U. Hamidullah, F. Jamshaid, A. Ahmad,M. T. Z. Butt and A. Ijaz, Sep. Purif. Technol., 210, 627 (2019).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로